
Co Wolf
A Co-Evolution Tool

Entwicklungsprojekt Nr. 3

Co-Evolution of Architectural and

Certification Models

Christian Karl Bernasko, Manuel Borja, Verena Käfer,

David Krauss, Michael Müller, Philipp Niethammer, Tim

Sanwald, Jonas Scheurich, David Steinhart, Rene Trefft,

Johannes Wolf, Michael Zimmermann

Institute of Software Technology

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Lars Grunske

Supervisor: Sinem Getir

Commenced: 2014-04-28

Completed: 2014-10-28

CR-Classification: D.2.2, D.2.11

Abstract

Models are a great aid to reduce the complexity of the software system so that analysis
tools and humans can conceive it. To regard the different aspects of a software system, as
for example architecture, performance or reliability, several models of the same system
are needed, though. Transformations translate the information contained in one model to
another model so that the user only has to complete information specific to that model
type.

Co Wolf delivers a framework for model development, transformation and analysis
implementing the idea of incremental model transformation. Incremental transformation
isolates changes that were done to a model to selectively transform only these which
solves two problems of classic transformations in practice: The runtime of the algorithm to
translate huge models even if the changes are minor and the need for the users to provide
additional information over and over again.

Furthermore, we check our implementation and the idea of incremental transformation
by evaluating the model versions of an evolving Pick & Place Unit according runtime and
the need of user input for classical and incremental transformation.

iii

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Document Structure . 2

2 Related Work 5
2.1 Model Driven Development . 5
2.2 Model Difference . 6
2.3 Model Transformation . 7

3 Project Management 9
3.1 Scrum . 9
3.2 Team . 11
3.3 Roles . 11
3.4 Continuous Delivery . 12
3.5 Tooling . 18

4 Requirements 27
4.1 Customer . 27
4.2 Infrastructure . 28
4.3 Models . 29
4.4 Analysis . 30
4.5 Editors . 31
4.6 Evolution . 32
4.7 Co-Evolution . 33
4.8 Maintenance Preparations . 34

5 Foundations and Technologies 35
5.1 Eclipse-Plugins . 35
5.2 Model Analyzer . 42
5.3 Logback and SLF4J . 45

6 Models 47
6.1 Software Architecture Models . 47
6.2 Quality of Service Models . 55

v

Contents

7 Transformations 67
7.1 State Chart to DTMC and Vice Versa . 67
7.2 CTMC to DTMC and Vice Versa . 68
7.3 Fault Tree to CTMC . 69
7.4 Component Diagram to Fault Tree . 71
7.5 Sequence Diagram to LQN . 74

8 Architecture 79
8.1 Concept and Overview . 79
8.2 Models . 80
8.3 Evolution . 82
8.4 Co-Evolution . 84
8.5 Graphical Interface . 85

9 Implementation 87
9.1 Models . 87
9.2 Version Management . 93
9.3 Analysis . 95
9.4 Evolution . 99
9.5 Co-Evolution Framework . 103
9.6 Integration Testing . 109

10 Acceptance Criteria 111
10.1 Format . 111
10.2 Basic Actions . 113
10.3 Model Editor . 114
10.4 Test-Case Description and Execution . 122

11 Evaluation 125
11.1 Goals . 125
11.2 Design . 126
11.3 Threats to Validity . 127
11.4 Results . 127
11.5 Conclusion . 130

12 Developer Guide 133
12.1 Develop a New Model . 133
12.2 Develop a New Evolution . 137
12.3 Develop a new Co-Evolution . 144

vi

Contents

13 Use of Co Wolf 151
13.1 Installation . 151
13.2 Create New Models . 156
13.3 Export Models . 159
13.4 Working with Versions . 160
13.5 Evolution of a Model . 162
13.6 Co-Evolve a Model . 163
13.7 Analyze a Model . 168

14 Future Work 171
14.1 Development . 171
14.2 Functionality . 171

15 Conclusion 175

Bibliography 177

Glossary 183

Acronyms 185

vii

List of Figures

2.1 MDA models and transformations [Ley13] . 6

3.1 CoWolf merge token and traffic light . 14
3.2 Continuous delivery infrastructure . 15
3.3 Registration of Extension Points . 20
3.4 Example for an GitHub issue. 24

5.1 Eclipse Modeling Framework (EMF) editor with a CTMC meta model. 36
5.2 Side-by-side editing (textual and graphical) . 38
5.3 Edit operation defined as Henshin rule . 41
5.4 Processing pipeline of SiLift [Keh+14b]. 41
5.5 XFTA model and script files . 43

6.1 Overview of a component diagram. [Sd] . 48
6.2 A component [Sd] . 48
6.3 A provided Interface [Sd]. 49
6.4 A required Interface [Sd]. 49
6.5 A simple connector [Sd]. 49
6.6 A multi connector [Sd]. 49
6.7 Overview of a statechart. 50
6.8 A statemachine. 50
6.9 A state. 50
6.10 A composite state. 51
6.11 An entry state. 51
6.12 An exit state. 51
6.13 A do action. 51
6.14 A transition . 51
6.15 Overview of a sequence diagram. [Sd] . 52
6.16 A lifeline header [Sd] . 52
6.17 A synchronous call with its reply message [Sd] 53
6.18 An asynchronous call [Sd] . 53
6.19 A message which creates a new lifeline [Sd] 53
6.20 A message which deletes the receiver [Sd] . 54
6.21 An execution on a lifeline with its start and end point [Sd] 54
6.22 A sub-sequence which is executed several times [Sd] 54
6.23 Two alternative behaviours depending on the condition [Sd] 55

ix

List of Figures

6.24 The DTMC meta model . 56
6.25 Graphical representation of a simple DTMC model in CoWolf. 57
6.26 The CTMC meta model. 58
6.27 Graphical representation of a simple CTMC model in CoWolf 58
6.28 Layered Queueing Network (LQN) example 59
6.29 Graphical representation of a processor . 60
6.30 Graphical representation of a task . 61
6.31 Graphical representation of an entry . 61
6.32 Graphical representation of an activities graph 62
6.33 Example of a Fault Tree . 62
6.34 Graphical representation of a hazard . 63
6.35 Graphical representation of a basic event . 63
6.36 Graphical representation of an undeveloped event 64
6.37 Graphical representation of an intermediate event 64
6.38 Graphical representation of an AND gate . 64
6.39 Graphical representation of an OR gate . 64
6.40 Graphical representation of an INHIBIT gate 65
6.41 Graphical representation of an XOR gate . 65
6.42 Graphical representation of an PRIORITY-AND gate 65

7.2 And Gate . 69
7.3 Or Gate . 70
7.4 Priority And Gate . 71
7.5 New component instances pattern . 72
7.6 New connections pattern . 73
7.7 New connection between sensor and software component pattern 74
7.8 All created tasks are related to the CPU processor. 75
7.9 Each lifeline will be transformed to a task. 75
7.10 Transformation of synchronous messages . 76
7.11 Transformation of asynchronous messages . 76

8.1 Overview of the components. 79
8.2 Important elements for the realization of the evolution feature of CoWolf . . 83

9.1 User interface of the EMF tree view editor . 88
9.2 Basic structure of the .odesign file . 88
9.3 Structure of the .odesign file for the Statechart model 90
9.4 User view of the edit palette for the fault tree model editor 90
9.5 Definition of the element creation in Sirius . 92
9.6 ModelAssociationManager Model . 94
9.7 Continous Time Markov Chain (CTMC) properties wizard 96
9.8 Snippet of the .lqn file’s template . 97

x

List of Figures

9.9 UML class diagram of the AbstractEvolutionManager class. 100
9.10 UML class diagram of the TechnicalDifferenceBuilder class 101
9.11 The wanted structure of a transformation graph. 104
9.12 The graph structure after adding all resources. 105
9.13 Transformation Mapping Editor. 108

11.1 Time needed for execution in each transformation step. 128
11.2 Number of rules executed in each transformation step. 129
11.3 Manual adjustments needed after each transformation step 131

12.1 Ecore classes are inherit from IDBase in the CommonBase meta model 134
12.2 Import of a ecore metamodel into an genmodel. 135
12.3 Definition of a new Model Extension . 137
12.4 MANIFEST.MF Ñ Dependencies for EvolutionManager. 138
12.5 MANIFEST.MF Ñ Extension for EvolutionManager. 140
12.6 MANIFEST.MF Ñ Dependencies for TechnicalDifferenceBuilder. 140
12.7 Components of the transformation graph . 146
12.8 Example of a mapping based transformation rule 147
12.9 Example of a transformation rule using SiLift Differences 148

13.1 Create a new CoWolf project . 156
13.2 Create a new model . 157
13.3 The structure of an aird file . 157
13.4 An error occurs while opening an editor . 158
13.5 An error occurs while renaming or moving model files 158
13.6 This dialogue shows up after editing model files 159
13.7 Wizard to export a CTMCs to a PRISM model. 160
13.8 Before applying a patch . 161
13.9 After applying a patch . 161
13.10Model Difference Wizard of CoWolf . 163
13.11Calculated difference of two model versions. 164
13.12Evolution view of an example model. 165
13.13Co-Evolution Wizard of CoWolf . 166
13.14Co-Evolution Results View of CoWolf . 167
13.15Inconsistent co-evolution detection . 167
13.16Preferences view for CTMC . 168
13.17CTMC properties wizard . 170

xi

List of Tables

3.1 Team experience . 11

10.1 Testcase matrix . 123

11.1 Goal 1: Performance of co-evolution . 125
11.2 Goal 2: Usability of co-evolution . 126
11.3 Measurements for the performance of the transformation process (M1/M2/M3)128
11.4 Most costly Henshin rule with total execution time and number of executions129
11.5 Measurements for the manual amount of work needed after transformation . 130

xiii

Listings

3.1 Example of a plug-in manifest. 19
9.1 Example rule mapping. 107
9.2 SWTBOT example . 109
12.1 Code to remove in the model wizard . 136
12.2 Example EvolutionManager implementation for CTMC. 139
12.3 Example TechnicalDifferenceBuilder implementation. 141
12.4 Example SERGe configuration file. 143
13.1 Self signed cert import. 153

xv

Chapter 1

Introduction
Author: Philipp Niethammer

Models gain a steadily increasing importance in today’s software systems. Often, great
parts of programs are generated from domain specific models and analysis on performance,
reliability and safety are completely done on separate models. Obviously, a model support-
ing all these duties would be very complex to the point where it is not usable anymore.
It is desirable to split the information into different models that are all specialized for a
specific task, for example by a well-founded theory on analysis methods and a rich tool
infrastructure. For instance, it does not make sense to implement complex probabilistic
analysis in a domain specific model, if the same task can be easily performed using Markov-
Chains. Therefore, transformations between different types of models play a prominent role.

However, as program code does, models change over time, especially in iterative or
agile software development where modifications are often minor but rather frequent. This
evolution of a model often entails that other models must be updated as well. For example,
if a new software component is added to the architecture, the performance model has to
regard this component, too. Classic transformations can be not suitable for this use case, as
they have two main drawbacks.

First, the steps of a transformation are typically proportional to the size of the models.
Thus, the transformation of a big model can take a long time, even if there were only very
small changes. Simple one-to-one transformations, which translate an element of the source
model into one element of the target model, have a linear runtime, but there are complex
scenarios of pattern creation that have exponential runtime. For these, a model instance
quickly reaches a size where the transformation is not economically reasonable anymore.

Second, often the resulting model is not complete since the source model does not
provide all needed information. These information must be supplied by the user after each
transformation, that is investing manpower, hence increased costs.

A solution to these problems is seen in incremental transformation [JE04], a process
that identifies changes done to the source model and translates only these changes to
the target model instead of a full transformation. We describe the ongoing incremental
transformation following the evolution as co-evolution.

1

1. Introduction

1.1 Goals
Author: Philipp Niethammer

Co Wolf is an extensible tool for model evolution and co-evolution management. It comprises
mainly three aspects:

Ź The management of associations between Model Instances

Different model instances often have associations in between them. Models of the same
type can be predecessor or successors, performance models base on specific versions
of architecture models. Co Wolf stores and maintains those associations so that they are
sound at any time and dependencies can be found and viewed easily.

Ź Deliver utilities for model development and analysis

For consistent development of the models, Co Wolf provides a common environment
with editors and verification for the different model types. Furthermore, interfaces to
external tools are provided to analyze models.

When models get bigger, finding changes between versions of the same model is
not trivial. Common difference detection tools (diff) mostly are not very usable for
comparing models as they either work on a textual base (i.e. find the differences in
the XML-File) or can only identify basic changes like additions or deletions. While
the former case is at least quite usable, both results may be hard to interpret for more
complex operations. By including SiLift [Keh+14a], Co Wolf can find and view changes
on a higher level. For example, if a method in a UML class model is moved to the
classes’ common parent (pull up), a simple diff returns multiple deletions and a creation
of methods. SiLift identifies this change as a common refactoring measurement and
reports it as such.

Ź The co-evolution of an associated model on the basis of evolutions

As described before, models may have to be updated if other models changed. Often,
those updates can be described canonically. Co Wolf features the definition of rules that
define the relation between model types. Using these rules, co-evolutions can be done
automatically for all associated models.

1.2 Document Structure
Author: Verena Käfer

First of all the related work will be discussed in Chapter 2. Then an overview about
the project management and the used tools follows in Chapter 3. Afterwards Chapter 4
describes the necessary requirements for the project including the customer. Now the used
foundations and technologies are explained in Chapter 5. The used models are described
in Chapter 6 and the transformations between them in Chapter 7. Chapter 8 then shows
the architecture of Co Wolf and Chapter 9 shows the implementation of the project. Chapter

2

1.2. Document Structure

10 continues with the acceptance criteria. Afterwards the evaluation is shown in Chapter
11 and a developer and user guide is included in Chapter 12 and 13. Finally Chapter 14
describes the future work and Chapter 15 the conclusion.

3

Chapter 2

Related Work

There is a lot of related work for model driven development, model differences and model
transformations. The important parts for our project are described in the following chapter.

2.1 Model Driven Development
Author: Manuel Borja

Motivation

New technologies, programming languages and platforms evolve and get born constantly.
That represents to the companies a difficulty to take a decision about which technology or
set of technologies would be more suitable in order to implement and install its software
system. Not only because the offer is high, but also because they have to support interoper-
ability with another systems.
Instead of spending large amounts of time in technical issues, companies rather should be
focused in analyzing and modeling their business logic independently in which platform
or programming language the software system will be implemented. That is the core idea
of MDA (Model-Driven Architecture) and MDD (Model-Driven Development) [MM01].
The main principle of MDA is the construction of a set of models which express the
business logic and the latter transformation to the specific platform. The architecture of the
MDA models is described in Figure 2.1

Ź Computation Independent Model (CIM): the system objects (persons, artifacts, interac-
tions, etc) are represented as they are with no correspondences with the software system.
It is also called domain model or business model.

Ź Platform Independent Models (PIM): represents the structure and functions of the
system without technical details.

Ź Platform Specific Models (PSM): provides a view of the system from the platform
specific point of view.

Transformations

Transformations allow the representation of the system in different levels of abstraction.
They can also produce new artifacts, viewpoints or models based on patterns. In the case

5

2. Related Work

Figure 2.1. MDA models and transformations [Ley13]

of the aforesaid the information of the original and generated (transformed) models is the
same [OMG14].
Transformations are supported via mappings and patterns, which specifies how the models
of the MDA have to be transformed i.e. what is the correspondence between elements of
the models and how the transformation has to be done.

2.2 Model Difference
Author: Michael Zimmermann

A large number of algorithms for comparing model versions have been proposed. One
class of them is based on logging. The logging-based approaches (as e. g., [SZN04], [LO92],
[HK10], [Kög08]) log user edit operations and store them with the corresponding model. A
big problem of these approaches is the dependence on closed development environments.
Of course changes in the model are just logged if they were made in the monitored editor
or tool. In addition, only direct revisions of a model can be compared. Thus, transformed
models or imported models can’t be compared using this logging-based approaches.

The remaining model comparing approaches can roughly be divided into (a) algorithms
that can only detect elementary low-level model changes and (b) algorithms supporting
the semantic lifting of model differences.

There are many approaches belonging to group (a). For example [The14b], [Tae+14],
[BP08], [Bra11] and [Sof14a]. However, the problem with these approaches is the difficulty

6

2.3. Model Transformation

to understand the results of the algorithms or tools. This is because even a small user
modification of a model can result in a lot of low-level technical changes that are hardly to
understand by the user.

The approaches of group (b) address this problem. Here the detected low-level changes
are grouped into user edit steps and thus lifted on a higher abstraction level. [MB+14]
provides a UML-specific EMFCompare extension that enables the grouping of low-level
changes into high-level change operations. But for each edit operation the code that detects
this high-level change operations must be implemented manually. Moreover, this extension
only is suitable for UML models.

Another approach from Könemann [Kön10] focuses on model patching. Nevertheless,
he addresses the problem of grouping atomic changes into "abstracted semantic changes"
that "are closer to the user’s intention". The process he describes uses different strategies
like name patterns or OCL queries. But as part of this process the user needs to interact
e. g., check the correctness of introduced abstractions.

A much more automated approach is SiLift [Keh+14a] (see chap. 5.1.6). Here, in contrast
to Könemanns approach, the recognition rules which are needed for the semantic lifting
can be derived from the meta-model specification. Also, the execution of these rules and
thus the semantic lifting can be fully automated.

2.3 Model Transformation
Author: Rene Trefft

Model Transformation is an essential activity in Model Driven Development (MDD). Models
are modified, translated to intermediate models and finally code is generated. Due to
this importance, different Model Transformation approaches have been developed. In
the following a closer look on in-place transformation approaches for models based on
the Eclipse Modeling Framework (EMF) is given. EMF is a well-known and widely used
modeling framework which provides code generation facilities for creating applications
based on structured data models. [Are+10]

EMF Tiger [Bie+06] is a Model Transformation approach which provides a purely rule-
based transformation language that supports simple attribute changes only. Just negative
patterns as application conditions are accepted.

Kermeta [Ker] is a textual approach that supports behaviour definition through an
imperative, objected-oriented action language.

The Epsilon Wizard Language (EWL) [Kol+07] is suitable for small in-place transforma-
tions. A so-called wizard can be compared with a rule. It consists of a guard, a title and a
do-section where the transformation is imperative and object-oriented programmed. The
effects of a transformation can be undone or redone.

In Moment2 [Bor07] the transformation is realized by rewriting logic based on Maude.
A rewriting theory can include complex conditions as OCL constraints [Ocl]. However,
such rewrites can’t be grouped to larger transformation modules.

7

2. Related Work

Transformations in MOLA [Mol] are based on MOLA diagrams. A MOLA diagram
consists of pattern-based rules, control constructs like loops and sequences, subprogram
calls and further graphical statements. MOLA doesn’t support amalgamation or a similiar
concept for the application of transformation rules in parallel. Fujuba’s [GHS09] story
diagrams provides similiar language constructs as MOLA, but also don’t offer amalgama-
tion. Moreover, MOLA as well as Fujuba don’t provide a formal basis for further model
transformation validations.

The transformation language Viatra [BV06] which combines graph transformation with
abstract state machine (ASM) concepts is also rule- and pattern-based. In Viatra, modeling
languages must be specified by a proprietary meta modeling approach. Models in standard
meta modeling formats like EMF can be imported. The language provides advanced
features, e. g., recursive graph patterns, generic and meta-transformations and ASM control
structures.

Henshin is the only Model Transformation approach which directly operates on EMF
models. It provides a comprehensive and expressive graphical transformation language,
supports endogenous as well as exogenous transformations and is completely based on
algebraic graph transformation [Ehr+06; BET10; Kus00].

GROOVE [KR06] is also graph transformation based and supports advanced concepts
like nested application conditions and amalgamation. Indeed, regular expressions can be
used for matching which Henshin doesn’t support. However, model checking is realized
by Computation Tree Logic (CTL) or Linear Temporal Logic (LTL) formulas which are less
expressive than the µ-calculus formulas supported by Henshin through the CADP model
checker [Gar+07]. Last but not least, GROOVE doesn’t support EMF models yet.

8

Chapter 3

Project Management

The central part of the Co Wolf project was a time-boxed development phase of 8 weeks.
With a given development team size of 12 persons and a 40 hour week, this sums up to 480
hours of development per week and about 3800 hours in total. Obviously, it is essential to
choose a development process and infrastructure that meets the requirements of managing
the short timespan on the one hand, the relatively big team and therefore highly parallel
working method on the other hand.

In this chapter, we describe Scrum as foundation of our development process in
Section 3.1, the team structure and roles (Sections 3.2 and 3.3) as well as the idea of
Continuous Delivery and tool infrastructure we used to support the development process
(Section 3.4).

3.1 Scrum
Author: Philipp Niethammer

Scrum is an agile software development process framework conceived by Ken Schwaber and
Jeff Sutherland, published in 1997 [SS14; Sch97]. It is based on the realization that, unlike
other process models assume, e.g. the Waterfall model [Roy70], often the development
process cannot be planned completely in the beginning.

Scrum instead splits the development in time-boxed phases, Sprints, usually of one
month length or less. The goal of each Sprint is a usable, stable product increment. Unlike
in iterative development where each iteration’s goal is defined in the project planning, the
development decides on the content of a Sprint at its beginning. The decision is supported
by the Product Backlog, a prioritized list of requirements, so-called User Stories. This list is
continuously updated to match the needs of stakeholders.

Consequently, Scrum results in a flexible, agile development process that can deal
with unclear a priori requirements as well as react quickly to changes in the stakeholders’
interests.

When we began the project, there was only a vague goal and it was clear, that the
customer will itemize his requirements and priorities during the development phase. Thus,
we decided to use Scrum and as it is not a fixed process [SS13], adapted it to our needs.

We organized the development process in sprints of a week length each. This sounds
quite short at first glance but considering the restricted development time of 8 weeks and
therefore a total of 8 Sprints it was essential to obtain the wanted flexibility. Addition-

9

3. Project Management

ally, with the 480 hours of development time per week stated above, it was just within
manageable limits.

3.1.1 Sprint Schedule

Each Sprint started with the Sprint Planning. In this meeting, we discussed what items
of the Product Backlog can be done during the week and specified the technical tasks
that are necessary to complete these items. After the goal of the Sprint was set, potential
dependencies and problems were located and the tasks were assigned to the different
members of the team.

At the end of a Sprint, we used the Sprint Retrospective and the Sprint Review [SS13]
to reflect the sprint. First, in the Sprint Retrospective we explicitly inspected the last week
in regard to issues in the process and the communication in the team and with external
persons. After that, we had a look at the goals of the Sprint and assessed whether these
goals have been reached or not. In the latter case, we discussed the problems that lead to
the delay and reviewed the consequences.

These framing meetings were supplemented by Daily Scums, a short daily 15-minute
event where each team member explained what he has done and what he is going to do the
next day. This meeting mainly helps to synchronize activities and solve arising problems
in an early phase.

3.1.2 Tasks Management

The Backlog items normally are User Stories, a non-technical description of a requirement
from a stakeholder’s viewpoint as described in Chapter 4. However, during development
certain tasks arise that cannot be intuitively be formulated as user story. These are mainly
bug fixes, code refactoring and usability improvements. To manage these issues in the
Scrum infrastructure, we maintained them separately and included them in our Sprint
Planning. Additionally, we allowed to add issues of this kind during the Sprint, as well.
This was the case if bugs or enhancements were wrongly regarded as unimportant during
Sprint Planning but become necessary for the ongoing development. The dynamic addition
to the Sprint also worked as a buffer if a developer had to wait until dependencies were
resolved or had already finished his tasks.

In total, we worked on up to 50 tasks per Sprint. Although there is lots of tool support
for managing tasks in an agile environment, they were mostly considered as unclear and
not optimal to gain an overview of the process. Hence, we decided to use a simple ticket
system (see Section 3.5.2) and additionally keep track of all tickets and their process on a
physical board. According the suggestion of Sutherland, Downey, and Granvik [SDG09],
we separated it into the columns Product Backlog, Sprint Backlog, In Work and Done
and added the column Pull Request to satisfy this special state in our revision system (cf.
Section 3.5.2).

10

3.2. Team

3.2 Team
Author: Jonas Scheurich

The following table documents the team experience in the different technologies of the
Co Wolf project.

Table 3.1. Team experience

C
hr

is
tia

n
K

ar
l B

er
na

sk
o

M
an

ue
l B

or
ja

Ve
re

na
K

äf
er

D
av

id
K

ra
us

s
M

ic
ha

el
M

ül
le

r
Ph

ili
pp

N
ie

th
am

m
er

Ti
m

Sa
nw

al
d

Jo
na

s
Sc

he
ur

ic
h

D
av

id
St

ei
nh

ar
t

Re
ne

Tr
ef

ft
Jo

ha
nn

es
W

ol
f

M
ic

ha
el

Zi
m

m
er

m
an

n

Plugin Prototype ‚ ‚ ‚ ˝

GUI ˝ ‚ ˝ ˝ ‚ ˝ ˝ ˝

Meta Models ˝ ˝ ‚ ˝ ‚ ‚ ˝ ‚

Graphical Editor ‚ ‚

Model Versioning ‚

Evolution ‚ ˝ ˝ ‚ ˝ ˝ ‚

Co-Evolution Components Ñ Fault Tree ˝ ˝ ‚

Co-Evolution State Chart Ø DTMC ‚ ˝ ˝

Co-Evolution CTMC Ø DTMC ˝ ‚ ‚

Co-Evolution Sequence Diagram Ñ LQN ‚

Co-Evolution Fault Tree Ñ CTMC ˝ ‚ ‚

Co-Evolution Framework ˝ ‚ ‚ ‚ ‚

Performance Analysis ‚ ˝ ‚

Safety Analysis ‚

Reliability Analysis ˝ ˝ ‚

Continuous Delivery ‚ ‚

Automatic Tests ‚

Main experience in this technology ‚

Some experience in this technology ˝

3.3 Roles
Author: Verena Käfer

We mainly adopted the Scrum roles but also added some team specific roles:

11

3. Project Management

Ź Project leader: Philipp Niethammer

The project leader was responsible for the organization of the whole project. He planned
the meetings with the supervisor and the customer, structured the daily scrum meetings
and organized the sprint plannings.

Ź Product Owner: Tim Sanwald

The product owner was responsible for the backlog. He organized the tickets and the
prioritization of them.

Ź Sys-Admin: Christian Karl Bernasko

The Sys-Admin was responsible for the technical administration of the project. He
organized the repositories and the Maven project structure.

Ź Quality Manager: Rene Trefft

The quality manager was mainly responsible for the correct naming and categorizing of
all plug-ins to have a consistent naming and no unnecessary dependencies.

Ź Documentation Manager: Jonas Scheurich

The documentation manager was responsible for the final report. He distributed the
chapters and developed the LATEX infrastructure for the final report.

Ź Developer: Everybody

Ź Typing Master: Verena Käfer

The typing master was responsible to protocol every customer meeting and send a
protocol to all participants.

Ź Fun Master: David Steinhart

The fun master was responsible for the team spirit. He organized activities for the team
so we could get to know us better and relax after work.

3.4 Continuous Delivery
Author: Christian Karl Bernasko

Many companies now using agile development strategies to produce software in a better
quality. The agile development practices focusing on costumer involvement and fast
feedback for developers. The most companies using continuous integration to enhance
their workflow. Continuous integration fits well in these agile paradigms. However,
when it comes to delivering software to the user, then there is less knowledge provided
from these agile methodologies. The methodology continuous delivery covers the need
to deliver software changes to the customer and also focuses on agile practices. As a
team we decided that we want to use the Scrum software development framework. The

12

3.4. Continuous Delivery

main part of Scrum are sprints. During a one week sprint many software changes were
introduced to the Co Wolf project. To maintain these software changes we decided at
the beginning of the project to use the continuous delivery methodology. Continuous
delivery was introduced by Jez Humble and David Farley [HF10]. Continuous delivery
has two main aspects, collaboratively implementing source code (continuous integration)
and delivering the software changes to the customer. To have continuous integration and
delivery to work hand in hand we needed to implement a continuous delivery pipeline.
A full featured continuous delivery pipeline consists of the following elements: a commit
stage, an automated acceptance testing stage, an automated capacity testing stage and
a manual testing stage.In this section we explain, how we implemented the continuous
delivery pipeline, we oriented us on the described purpose from the seminar paper [CKB14]
to fit the need of the build pipeline for the Co Wolf project.

3.4.1 Continuous Integration Process
Author: Christian Karl Bernasko

For developing source code as a team, we focused on the process that we adapted from
the article “Continuous Integration on a Dollar a Day” by James Shore (27th February,
2006). Initially all members of our team agreed to one rule, “From now on, our code in the
master branch at our Git repository will always build successfully”. We applied the rule by
performing the following steps. Every team member rebases its source code several times
a day. This means all team members have an up-to-date branch. Before committing new
source code into the version control system, the developer needed to find out if anybody
has the Co Wolf . The developers use the Co Wolf as a token. The Co Wolf is a action figure
that looks like a wolf Listing 3.1. Only the developer who has the Co Wolf is allowed to
interact with the master branch in the version control system. This means committing
new code into the master branch. First we run the build and the test scripts locally on our
machine. If the build succeeded, then the developer was allowed to merge the local branch
with the master branch. After the developer merged the local development branch into the
local master branch, he executed the build again. When the build passes, he committed
the local master branch into the remote master. Instead of using a bell like James Shore
used one, we used a traffic light which can be seen in Listing 3.1. The traffic light indicates
the last committer and the build status. Over the development time we learned that a
merge token and a traffic light are important tools for using the continuous integration
methodology successfully. The merge token helped us to commit without creating merge
conflicts. Whereas the traffic light together with an indicator of last committer made the
continuous integration server and build status more physically available.

13

3. Project Management

Figure 3.1. CoWolf merge token and traffic light

3.4.2 Continuous Delivery Infrastructure
Author: Christian Karl Bernasko

To develop the Co Wolf software we used several processes and tools. Discovering the best
tools, and learning how to use them effectively, was a part of this project. The Co Wolf
project is an Eclipse based plugin, prior to this technology we needed to have a Build tool
that supports Eclipse based applications. We choose the Apache Maven Project as our
build tool, which is also a project management and comprehension tool. Maven allowed us
together with Tycho to build Eclipse plugins (see Section 3.5.3). The main goal of the project
was to build Co Wolf collaboratively, to meet this goal we used a continuous integration
server called Jenkins (Section 3.4.3). Jenkins also stored our compiled binaries into a artefact
repository (Section 3.4.4), which allows other developers to retrieve the binaries of Co Wolf
without recompiling them. To get an overview of our product metrics we used Sonarqube
to analyse our source code and binaries (Section 3.4.5). The Sonarqube analyse was trigger
by Jenkins. To manage the collaboratively development we needed a version control system.
We used Git as version control system together with the Github ecosystem (see Section
3.5.2). All used tools are described in the following sections Listing 3.2 .

3.4.3 Continuous Delivery with Jenkins
Author: Christian Karl Bernasko

Continuous integration server are also called build servers. Build servers are the center of
the delivery pipeline. They provide automatism to build software and provide fast feedback
with reports. We could choose a build server from a variety of continuous integration
servers implementations. We used the most popular continuous integration servers called
Jenkins. Due to Jenkins expandability with plugins, we implemented a delivery pipeline
with several plugins.They are listed below.

Ź Git plugin

Ź Build pipeline plugin

14

3.4. Continuous Delivery

Source

Code

P2

Repository

Website
Nexus

Repository
SonarQube Jenkins

Eclipse Maven

GitHub Lismore Server

Developer machine

P2

Dependecies

Figure 3.2. Continuous delivery infrastructure

Ź SonarQube plugin

Ź Maven plugin

Jenkins, which is initially a scheduler used for cron jobs, can be expanded with the use
of the Git plugin to listen to a commit. We needed to configure Jenkins in order that every
time when a member pushes new code into the Git repository on Github, Jenkins gets a
notification and schedules a new build job to compile our source code. Github supports
external build server by providing a service which allows to specify a URL that gets called
every time a change happens in the Git repository.

To use the continuous delivery approaches we needed to implement a delivery pipeline.
With the build pipeline plugin it is possible to build a view that looks like a pipeline. This
makes it possible to overview every stage of the delivery pipeline at one place. In Jenkins
we can specify different build steps, the build pipeline aggregates the build steps and
visualize them as a pipeline. To implement a visualized pipeline we need to specify the
following build steps:

Ź build stage

Ź analyze stage

Ź deploy stage

An important advantage of the build pipeline plugin is that we can concatenate several
build jobs to a pipeline. If the build job succeeds, Jenkins schedules the next pipeline stage.
We used a small subset of the delivery pipeline that fitted our needs. We used a build stage,
where we used the Maven build tool to compile and verify our product. The analysis stage
where we analyzed our product and the deploy stage, where we deployed the binaries as
p2 update site into a separate Git repository.

15

3. Project Management

The Build Stage

In the build stage of the delivery pipeline, we had to do several tasks such as compiling,
code analysis, and executing unit tests or storing the build output into the artifact repository.
Jenkins supports these tasks by specifying pre and post as well as up and downstream
actions. With these actions it is possible to define which tasks should be executed before or
after the other tasks. For example, we can specify a post action to commit the binaries to the
artifact repository after compiling successfully the source code. The build stage compiles
the source code of our product. For this part we used the build tool Maven, the advantage
of Maven over ant for our project was that Maven integrates with Tycho, which we used
to build Eclipse specific plugins. In the build stage Maven resolves all our dependencies
and then compiles our source code. If Maven finished the compilation process it stored the
resulting binaries in our Nexus artifact repository, this allowed us to reuse the binaries in
the Analyze phase. During development of the Co Wolf project, we enhanced the build step
by adding a notification script. The notification script allowed us to get notified via Skype
if a build step failed or succeeded. If the build process passed successfully we trigger the
next stage the analyzing stage to start.

The Analyse Stage

We used SonarQube in the analyze stage to analyze the software metrics of our product.
At first the analyze stage was part of the build stage, but due to the long compilation and
analyze time we were forced to split the build phase in two parts. We needed to make this
decision to be compliant with the continuous integration methodology. We described in the
previous section that we agreed as a team that as long as a team member is in possession of
the merge token, nobody is allowed to introduce new code changes into the master branch.
The high frequency of code changes which lead to many commits and every commit to a
new scheduled build which took an average build time of ~20 minutes, while the analyze
part and the artifact deployment part also took about ~15 minutes we needed to split the
build phase into a build phase and analyze phase.

Deploy Stage

The last stage of the delivery pipeline is the release stage. In the release stage, we deployed
our binaries into a Git repository on Github. A great feature of Eclipse is that plugins
can be shared via a p2 repository also called update repository. Maven together with
Tycho, created for us at the build stage, the p2 repository. We only needed to upload the
repository automatically to a public place where the end user can download it. Since we
made in this project heavily usage of the Github ecosystem (Issues, Git, Wiki, Website), we
searched for an idea to also place the p2 repository on Github. We used a custom script
to commit our binaries into a separate Git repository called p2_update_site. A feature
of Github is to view files in a repository in a raw view, we used this feature to allow an

16

3.4. Continuous Delivery

Eclipse instance to download the p2 repository. The address to download this repository is
https://github.com/DevProjectSS2014/p2_update_site/raw/master. This link is only usable within the
Eclipse installation dialog. After a new version was deployed to the p2 repository, we
were able to install it into Eclipse. This helped us to get early feedback about missing
dependencies. The missing dependencies could not be detected during the build and
analyses stage nor on the developer machine. Common failures that we detected after
deployment were missing third party dependencies. The dependencies were missing in
the feature bundles (needed to be added manually separately) and also project options
which weren’t enabled. This led to the situation that after installing the software, icons and
functionalities were missing.

3.4.4 Nexus Pro Repository Manager
Author: Christian Karl Bernasko

Nexus is a version control system equally to Git, but we used Nexus to store artifacts instead
of source code. Software artifacts we understand to be the components of the software like
executable code, configurations, and database data. When we use Java, the artifacts can be
jars, wars, ears and fully developed libraries or collections of libraries. Software projects
are rarely developed without dependencies. For instance for our projects we used the
third party libraries Sidiff (Section 5.1.5) for model comparison and Logback for logging.
These dependencies have to be administered, which requires more effort if the project
contains many dependencies. When projects are developed interoperable they usually need
different versions of the same dependencies. If we consider an antipattern for administering
dependencies we would use a shared folder, which contains the dependencies and a list
where all the needed dependencies are listed. The developers would add the needed
dependencies manually to their project. The problem is that the list of the needed third
party dependencies and the shared folder can be disharmonious. We agreed as a team
that this is not a solution for our project, because it makes the development project setup
more complex. However, to manage dependencies comfortably we can used an artifact
repository. We used the artifact repository Nexus together with our build tool Maven.
Maven has an integrated package manager. Developers can check in developed libraries in
the artifact repository to share the libraries with their team members. The build tool then
uses the package managers to check out libraries from the artifact repository to resolve
dependencies and build the source code with the latest libraries. Another benefit, which
is needed for the delivery pipeline, is that it is possible to store a successfully compiled
build into the artifact repository. Jenkins is then able to check out exactly the same build in
another build job, without recompiling the source code. During development we learned
that the part of resolving dependencies is time consuming with the build tool Maven.
The Nexus repository manager has the possibility to aggregate several third party p2
repositories to one repository. The benefit to proxy the third party p2 repositories is, that
we are independent from the latency. However, we could not use this feature due to the
limited server resources.

17

https://github.com/DevProjectSS2014/p2_update_site/raw/master

3. Project Management

3.4.5 SonarQube
Author: Christian Karl Bernasko

SonarQube is an open platform to manage code quality. The framework includes a wide
range of quality analysis technics and provides them for many programming languages.
We are using SonarQube to verify that we develop software with a high quality. For
this purpose we are using several quality metrics e.g. comments, code duplication, code
complexity, coding standards, code coverage, potential bugs, design and architecture
detection and technical depth. SonarQube aggregates the different metrics and visualizes
them. The SonarQube system consists of two parts, the data collector SonarQube runner
and the SonarQube server. The SonarQube runner needs to be installed into the project
root. Then he collects all specified metrics from the project and publishes them to the
SonarQube server. The SonarQube server visualizes all data thru its web interface. The
SonarQube plugin for Jenkins connects Jenkins with the SonarQube sever. This makes it
possible, to integrate the metric collection process into the build pipeline. Jenkins allows us
to specify a pre-build process, which executes the SonarQube Runner to collect all data.
SonarQube has the possibility to define a quality goal, for instance the unit test coverage
must be higher than 80 %. If the metric exceed the predefine threshold, then Jenkins aborts
the job and response the issue. With this process we can verify that we only have source
code in a good quality in our repository. We learned during development that Co Wolf
heavily relies on generated code. This lead to the situation that the software analyses
showed metrics of third party code rather developed code by our development team. An
additional issue was that our source code was mixed up together with the generated code,
because of this situation we were not able to exclude only third party generated code from
the analyses.

3.5 Tooling

To get the maximum out of the project we used several tools to support us. First of all we
used Eclipse as environment for the development. As a version control system we decided
to use Git with GitHub as host for the project. To have a up-to-date overview over the
latest build and a continuous delivery we used Maven. All used tools are described in the
following sections.

3.5.1 Eclipse
Author: Rene Trefft

We used Eclipse Luna (4.4.0) for the development of Co Wolf , because a requirement was
to develop Co Wolf as plug-in for the Eclipse Platform. Further every team member had
already a strong experience with this IDE.

18

3.5. Tooling

Eclipse Plug-ins

The architecture of the Eclipse Platform is extensible, so every developer can contribute
new components, called plug-ins. Often a plug-in is also called OSGi bundle, because
Eclipse is based on Equinox, the reference implementation of OSGi which is a specification
of a component and service framework for Java. OSGi specifies a bundle as a unit of
modularization. In the following we will use the Eclipse term plug-in. Keep in mind that
both terms are (almost) interchangeable. [Vog13b; Vog14]

A plug-in is a Java project with additional meta data. These meta data are stored in
the files META-INF/MANIFEST.MF and plugin.xml relative to the root of the plug-in. [Vog13b;
Vog14]

The manifest file is a key-value-based file and especially specifies the Bundle Sym-
bolic Name which is the unique identifier of the plug-in. Further it explicitly defines
which packages of other plug-ins (attribute Import-Package) or complete plug-ins (attribute
Require-Bundle) are used and which packages will be exported (attribute Export-Package).
In this way the dependencies and the interface of the plug-in are effectively controlled.
Listing 3.1 shows a manifest file as an example. [Vog13b]

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: CoWolf Example

Bundle-SymbolicName: de.uni_stuttgart.iste.cowolf.example;singleton:=true

Bundle-Version: 1.0.0.qualifier

Bundle-Vendor: University of Stuttgart Institute of Software Technology

Bundle-RequiredExecutionEnvironment: JavaSE-1.7

Import-Package: de.uni_stuttgart.iste.cowolf.model,

de.uni_stuttgart.iste.cowolf.model.commonBase,

Export-Package: de.uni_stuttgart.iste.cowolf.example,

de.uni_stuttgart.iste.cowolf.example.util

Require-Bundle: org.eclipse.core.runtime;bundle-version="3.10.0",

org.eclipse.core.resources

Listing 3.1. Example of a plug-in manifest.

The plug-in file is an Eclipse-specific file and therefore not specified in OSGi. It defines
extensions and extension points. An extension point can be seen as a socket whereas
the extension is a plug that connects to it. If a plug-in wants to allow other plug-ins to
extend or customize its functionality it declares an extension point. It consists of an ID,
a human-readable name and an XML schema document that represents the structure to
which extensions must conform to. An extension consists of an ID and the XML node
that complies with the schema of the extension point. The extension registry contains
the declared extension points and extensions and provides an API to retrieve all installed
extensions of a certain extension point. A key thing to notice is that no Java classes have
been loaded after the extensions are retrieved, but only XML data, so the time for class

19

3. Project Management

Extension Point Plug-in Extension Registry Extension Plug-in

Declare Extension Point

Declare Extension

Query Extensions

Extensions [0..n]

Instantiate Object
Load Plug-in

Instantiate Object

Object

Call Method

Object

Figure 3.3. UML sequence diagram showing the interaction between Extension Point Plug-in, Registry
and Extension Plug-in on a method call. [Bar07]

loading is saved. If an extension point plug-in defines a Java class name in its schema and
finally needs the class it asks the registry for loading and instantiation. Thus, it’s up to the
plug-in when classes of the extensions should be loaded. Listing 3.3 shows the interaction
that occurs if an extension point plug-in wants to call a method of an extension plug-in.
[Bar07]

The Eclipse Platform already provides a lot of extension points. For Co Wolf we mainly
supply extensions for Eclipse extension points to customize and extend the Eclipse UI, e. g.,
add the Co Wolf perspective and wizards.

Eclipse Fragments

A fragment is an optional extension of a plug-in which is called host plug-in. It has also a
manifest which can contain the same attributes like a plug-in manifest and the host plug-in.
At runtime the fragment is logically merged with its host and both are represented as one
plug-in.

20

3.5. Tooling

Eclipse Features

A feature bundles plug-ins or other features and can be installed in the Eclipse Platform. It
can specify dependencies which must be present before installing. Further it can include
a description, copyright and licensing information. Also, a branding plug-in can be
specified that extends the About dialog of Eclipse. All mentioned data are defined in a file
feature.xml in the root of the feature.

Eclipse Target Platform

The target platform consists of a set of plug-ins which can be used (imported) in your plug-
in and fragment projects. By default the Eclipse installation is used as target platform. It
can be edited in the Eclipse preferences. The target platform can be, for example, extended
with the plug-ins contained in a P2 repository or directory.

Equinox P2

The Eclipse Platform provides an installation and update mechanism called Equinox P2
[Vog13a]. A P2 repository, also called update site, consists of plug-ins and features that can
be grouped into categories. In Eclipse a P2 repository can be generated with an Update Site
Project. It contains a category.xml file which defines the categories and contained features
and plug-ins.

Eclipse Product

An Eclipse product is a standalone version of an Eclipse Platform based tool. It can be
created for different environments. To create a product you must first create a product
configuration project. The product file in the root of the project contains all information
about the product. For example each product has an ID, branding stuff like icons, a
splash screen and text and the plug-ins respectively features (dependencies) the product
consists of. You can create a plug-in based or feature based product. Recommended
is the latter approach, because otherwise your feature information like the description
or licensing information are not included in the product. Especially a definition of a
product must be created and defined in the product file. A product consists of an ID
and a plug-in that provides an extension for org.ecipse.core.runtimes. This plug-in
further includes the splash screen and icons defined in the product file and must be
part of the product. Additionally, an application must be specified which represents the
default entry point for the product. A new application can be created or an existing one
reused. In case of a tool which should be based on the Eclipse IDE you can simply choose
org.eclipse.ui.ide.workbench.

21

3. Project Management

Eclipse PDE

The Plug-in Development Environment (PDE) of Eclipse provides tools for the development,
testing and debugging of Eclipse plug-ins, fragments, features, update sites and products.
For example it provides different projects and form-based manifests editors, e. g., a Feature
Manifest or Product Configuration editor. Equinox can be directly launched with a defined
set of plug-ins and fragments (or features) from your workspace and the target platform.

3.5.2 GitHub
Author: Tim Sanwald

GitHub is a web-based hosting service for software projects which offers a distributed
Version Control System (VCS) and several collaboration features like wikis and task
management. GitHub is one of the most popular services for hosting open-source projects,
probably through the easy to use graphical interface and in contrast to other open-source
hosting services, the main part at GitHub are the users and not the projects or repositories.

As VCS git is used at GitHub, which is a distributed system with emphasis on speed,
data integrity and non-linear workflows, more details on how we used git is described in
the following section. Afterwards, our use of the issue management system is explained.

Git Workflow

Git is a VCS like SVN or Mercurial and for this project wouldn’t be a problem to use any of
this, but we decided to use git in the beginning of the project. This decision was based on
three facts, first most of us had worked with git before. Second git is more error save than
SVN or Mercurial. At last the project should be easily published at the end of the project,
thus, we decided to use GitHub as provider and therefore we had to use git as VCS.

Our Git workflow is based on [Cha01] and is defined for each user story:

1. Create a new branch named with the id of the user story and a short description. This
branch should be based on the current master commit.

2. Work on that branch locally.

3. Commit that branch regularly to the remote repository to inform others about the
progress.

4. When you think the user story is fulfilled create a Pull Request on GitHub.

5. Another person is reviewing the pull request and is commenting parts which have to be
improved or changed.

6. If nothing has to be changed, the person can merge it into local master and check if
everything is working, too.

22

3.5. Tooling

7. If everything works, it can be pushed to the remote repository and Jenkins is automati-
cally called to build it.

Issue Management

Issues are one of the key feature on GitHub, they enable users to manage tasks which have
to be done. Also they can use them as a bug tracking system. An example of an issue
is given in Figure 3.4. Each issue consists of a title, a milestone, an assignee, labels and
comments:

Title describes the topic of the issue.

Comments can be created by each user. The first comment can be interpreted as a detailed
description of the issue. Followings are used to specify the issue or discuss with the
author, this is the case when problems have to be found or proofed if they exist on
several systems.

Milestone describes a phase of the project.

Assignee refers to the contributor who works on this issue which is recommended.

Labels can be defined by the user to signify priority, category, or any other information that
could be useful. In our case we used this to specify the type of the issue, so whether it
is an user story, task, bug or an enhancement.

We used a combination of online issues and offline post-its. Thus, we printed out the
issues and put it onto a scrum board to better visualize the progress of the current sprint
and our overall process.

3.5.3 Maven
Author: Rene Trefft

For the automation of the building process of Co Wolf we decided to use the Build-
Management-Tool Apache Maven which can be used for many building tasks like compiling,
testing, packing and the deployment of software. Moreover Ant scripts can be executed
for arbitrary tasks. All functionalities are provided by plug-ins, so Maven is completely
extensible. A plug-in consists of goals that can be executed. For example the Surefire
plugin provides the goal test to execute test cases. Goals of plug-ins are bound to phases.
A list of phases constitute a Maven lifecycle. If we for example pass the phase package to
Maven all goals associated with all phases until package will be executed. [The14a]

The project configuration is stored in the XML file pom.xml (Project Object Model) in
the root of the project. Each Maven project, generally called an artifact, is identified by
a groupId that represents the organization, an artifactId and a version. The qualifier
SNAPSHOT in a version, e. g., 1.0-SNAPSHOT, stands for a not yet released artifact. Further

23

3. Project Management

Figure 3.4. Example for an GitHub issue.

24

3.5. Tooling

each artifact must define a packaging which defines the type of the project. For example
the packaging jar is supported by Maven out of the box. Further types of packaging are
provided by Maven plug-ins, so they must be specified in the POM first. The packaging
defines the phase-to-goals-bindings. [The14a]

Maven plug-ins are located in external Maven repositories and will be downloaded
to the local Maven repository. Normally any dependencies defined in the POM are also
fetched from Maven repositories. In our case the Maven plug-in Tycho (see next section)
was used for building Eclipse plug-ins. Tycho needs dependencies from a P2 repository.

Associations between Maven projects can be defined by POM-inheritance and -aggregation.
A project can define a parent project in its POM to reduce the redundancy and thus the
maintenance effort and probability for faults. Furthermore a project with packaging pom

can define sub modules (projects). A phase executed on such a project will be executed on
all sub modules in the order they are specified in its POM. [The14a]

Plug-in Building

Maven doesn’t provide packaging types for e. g., Eclipse plug-ins or features out of the
box. Therefore an appropriate plug-in must be added to the POM of the desired project.
Currently there exist two approaches for Eclipse plug-in building with Maven.

The Maven bundle plug-in is the POM-first approach which means your dependencies
are defined in the POM and are fetched from a Maven repository. It’s the standard Maven
way of dependency management. Also attributes like the packages to export will be
defined in the POM. At build time the bundle manifest will be generated. The main
disadvantage of this approach is that you have a standard Java project (with Maven project
structure) instead of a plug-in project and thus no Eclipse PDE support. Especially for the
development of an Eclipse Platform based tool this is an in-acceptable point.

Therefore we decided to use the Manifest-first approach, the Maven plug-in Tycho.
It uses the metadata of Eclipse plug-ins, e. g., the bundle manifest for building, so you
have to create an Eclipse PDE project which means all PDE tools are available. Tycho
supports plug-ins, fragments, features, update sites, products and also RCP applications
which are not relevant for us. Thus, the appropriate packaging must be defined in the
POM. An important thing to notice is, if Tycho is added to your POM, any dependencies
declared there will be ignored. Instead, you have to specify P2 repositories which contain
the necessary plug-ins, because Tycho internally uses parts of Equinox P2 for dependency
resolution.

Maven Integration for Eclipse

The Maven Integration for Eclipse, also called m2e, is an Eclipse plug-in that provides
support for Maven projects in Eclipse. Maven builds can be directly launched from Eclipse
by using the supplied, embedded Maven or an already installed, external Maven version.
Several wizards are provided, e. g., for the creation of Maven projects and a POM editor.

25

3. Project Management

Since Eclipse Juno m2e is supplied with several editions of Eclipse, e. g., the Java Developers
edition.

We use m2e for managing our Maven projects (especially their POM files) and launching
a local build of Co Wolf within Eclipse.

Maven Project Structure

The parent project de.uni_stuttgart.iste.cowolf.parent aggregates all Co Wolf projects
which should be part of the Maven build process. Thus, it declares these projects as
modules in its POM and has the packaging pom. We’ve defined as group ID de.uni_-

stuttgart.iste.cowolf, as artifact ID the project name (Maven convention) and as version
1.0.0-SNAPSHOT. Further all necessary P2 repositories were added, so that all plug-ins of our
target platform are also available during the build respectively can be resolved. Moreover
we added necessary Maven plug-ins, especially Tycho.

The aggregated projects are plug-ins, fragments, features, update site projects and a
product configuration project containing the product file. They’re all define the parent
project as parent, so they inherit all elements except the artifact ID and the packaging. The
artifact ID always begins with de.uni_stuttgart.iste.cowolf, the packaging depends on
the project type, e. g., the Tycho packaging eclipse-plugin was used for a plug-in.

Every test project of Co Wolf , e. g., de.uni_stuttgart.iste.cowolf.model.statechart.tests
was created as fragment, because in this way classes which are only visible within its
package can also be accessed and thus tested.

Features were created for sets of Co Wolf plug-ins which belong together, e. g., the
Co Wolf Core (de.uni_stuttgart.iste.cowolf.core.feature) or the Statechart Evolution.
These features with their contained plug-ins were added to the update site project
de.uni_stuttgart.iste.cowolf.p2update, more precisely said their category file. The
P2 repository is generated during build and stored in a separate Git repository on
GitHub. It’s used for installing or updating Co Wolf . Another update site project de.uni_-
stuttgart.iste.cowolf.p2dependencies was created for necessary plug-in dependencies
which are not available in an external P2 repository. This applies to the plug-ins of the
logging framework we use (see chap. 5.3). We decided to separate this project from the
standard build process, because changes occur rarely. It is also stored on GitHub.

To deliver Co Wolf also as a standalone software we created an Eclipse product. The
product configuration project is de.uni_stuttgart.iste.cowolf.product and the product
project de.uni_stuttgart.iste.cowolf.

26

Chapter 4

Requirements

At the beginning of the development the most of us had limited knowledge about models,
co-evolution and of the tools we have to use. In order to understand what was the expected
result of the project, we had meetings between the whole team and the advisors. During
these meetings we identified requirements which our product had to fulfill. The result of
this requirement analysis is described in the Chapters 4.2 to 4.8. In order to establish the
input information, we included the requirements as user stories.

An user story represents the ’who’, ’what’ and ’why’ of a requirement as a simple
sentence in everyday or business language. An example of this is as follows:

As User
I want to manually co-evolve the models State Chart and DTMC
to to use the DTMC as quality model for my system

Each of the user stories describes a part of a requirement and then they are used as
backlog items. This enabled us to be flexible at changing requirements, because just the
most important user stories are taken into the next sprint. To integrate the user stories in
our GitHub environment (see 3.5.2), we generated an issue for each user story and labeled
them. Therefore, each of us knew the current state of the user story and of the development
progress as well. The links of a requirement to each user story are given through their
GitHub id.

In the following sections some information about the customers are given as well as the
classification of requirements. Afterwards all identified requirements are presented with
their links to GitHub user stories, their acceptance criteria and the stakeholders.

4.1 Customer
Author: Tim Sanwald

The customer of this project was the Reliable Software Systems Group (RSS) from the
University of Stuttgart. The following persons were supervisors of this project:

Prof. Dr. Lars Grunske Examiner of the project.

27

4. Requirements

Sinem Getir Supervisor and customer for reliability analysis, safety analysis, evolution and
co-evolution of models. Provided theoretical incremental transformation and some
implemented co-evolutions.

André van Hoorn Supervisor and customer for performance analysis. He also provided
information about performance solvers.

For the reason that this was a university project and we had no real stakeholders we
associated following common stakeholders to the requirements found with the supervisors:

Maintenance engineer a developer which wants to improve or extend the Co Wolf framework.

User a user which wants to create, evolve, analyze and co-evolve models.

4.2 Infrastructure
Author: Tim Sanwald

4.2.1 Co-Evolution Project Nature (#2, #3, #4)

Description The user should be able to create a new project with the specific Co Wolf Eclipse
nature. The nature should enable the project to be displayed in the project explorer,
further it should unlock the popup menu in the project explorer to evolve, co-evolve
and analysis models. A folder for models should be generated automatically. For the
user it should be possible to add and remove the Co Wolf nature in a common way,
defined by the Eclipse style guide.

Acceptance Criteria The user is able to create a new project, which contains a models folder
and the natures to use the Co Wolf menu entries for analysis, evolution and co-evolution.
It should be possible to remove and add the nature to a project through the popup
menu at the project.

Stakeholders User

4.2.2 Custom Perspective (#5)

Description The user should have the possibility to choose a perspective, which is configured
to show all commonly used views related to the Co Wolf project. The perspective should
include views for navigation on the left, views for console and problems on the bottom,
views for outlines on the right.

Acceptance Criteria The perspective can be selected through the Eclipse Perspective Bar. On
activating the Co Wolf perspective, commonly used views should be opened and the
appearance should look like described above.

Stakeholders User

28

4.3. Models

4.2.3 Product (#300)

Description In Eclipse it’s complicated to update and install all dependencies of a tool
through an update site. In fact of this, it should be possible to download an individual
package of the tool, like "Eclipse for Java EE Developers", as zip which includes all
dependencies of Co Wolf . This is an usability improvement for inexperienced users of
Eclipse, so they can use Co Wolf without configuring the system.

Acceptance Criteria It should include a zip file, which consists of Eclipse and Co Wolf with
all dependencies. At start the Co Wolf perspective is set as the default perspective.

Stakeholders User

4.2.4 Co-Evolution Controller (#15)

Description To provide the possibility of incremental transformations, the co-evolution have
to be done in a defined way to prevent coded clones. The following steps are part of
this:

1. Let the user choose the target models

2. Calculate the differences in the source model

3. Call the specific co-evolution on all target models

4. Calculate the differences in the target models and present them to the user

Acceptance Criteria The user can run the Co-Evolution on a model and just have to choose
the target models. The user also can follow the progress and gets a result view presented,
which displays the changes of the target models. For a Maintenance engineer the effort
of developing a new incremental transformation should be as minimal as possible.

Stakeholders User, Maintenance engineer

4.3 Models
Author: Tim Sanwald

4.3.1 Model Definitions (#20, #21, #22, #23, #24, #25, #82)

Description To use Co Wolf as a modeling tool the following types of models must be
implemented as Ecore Models:

Ź State Chart
Ź Component Diagram
Ź Sequence Diagram
Ź DTMC

Ź CTMC

Ź Fault Tree

Ź LQN

29

4. Requirements

Acceptance Criteria The user can create the models above and store them in the Co Wolf
project. The Model Instances should contain the commonly used object and references,
just some unimportant features can be ignored.

Stakeholders User

4.3.2 Model Validation (#81)

Description The user has to be sure, that his generated model is valid and is not missing
any values. To guarantee the validness of a model Object Constraint Language (OCL)s
should be provided. To perform a validation, the context menu have to contain an item
which performs the validation of the selected model. Once the errors in the model are
identified, they need to be marked and should contain an informative description.

Acceptance Criteria The user can choose "validation" at the navigators context menu, which
runs a syntactic validation of the model and performs OCL checks to ensure that the
co-evolution of this model can be run. The results are marked in the editor and in the
"Problems View" of Eclipse.

Stakeholders User

4.3.3 Export Reliability Models (#4)

Description The analysis of DTMC and CTMC is provided within the requirement 4.4.1,
but sometimes the user wants to calculate more specific details in PRISM model checker
[KNP11] directly. To support external analysis of DTMCs and CTMCs the models
should be exportable through the Eclipse export menu. By means of this functionality,
the model has to be transformed into a readable input model for PRISM model checker.

Acceptance Criteria The user can find an entry in the export menu of Eclipse, which
signalizes the export of a reliability model to PRISM format. By clicking on this entry a
new wizard should opened, so that the user can define the model, if the corresponding
Probabilistic Computation Tree Logic (PCTL) rules should be exported too, and the
destination of the export. On finish the model and if checked the PCTLs are transformed
into a PRISM readable format.

Stakeholders User

4.4 Analysis
Author: Tim Sanwald

4.4.1 Reliability Verification (#17, #159)

Description For calculating the reliability of a system, the user needs to analyze a DTMC or
CTMC with PRISM model checker. In order to do such analysis, the UI must provide

30

4.5. Editors

a comfortable way to define the properties for the calculation and present the results
afterwards.

Acceptance Criteria Co Wolf supports the verification and the simulation method of PRISM
model checker. For DTMC analysis it’s enough to calculate the reachability of states and
labels. For the CTMC analysis it is necessary to provide more configuration parameters.
It should support some configured examples and analyze PCTLs created by the user.
To do this the user should configure the analysis with a wizard and get the results
afterwards.

Stakeholders User

4.4.2 Performance Analysis (#18, #77)

Description Co Wolf must support the analysis of the performance through LQN perfor-
mance analysis. The user should run it in the same way as in 4.4.1. The user needs to
define the path of the external tool which is used for the analysis.

Acceptance Criteria The user is able to configure the path to LQN Solver [Fra+13] and
select the analysis in the context menu. The LQN model is transformed into the input
format of LQN Solver and the analysis is called. After finishing of the analysis the user
get the results of the performance analysis. The analysis includes the calculation of
Throughput, CPU-Usage and Response times.

Stakeholders User

4.4.3 Safety Analysis (#19)

Description To do safety analysis directly from Eclipse Co Wolf should support the analysis
of safety models. The program call should be as in 4.4.1 to allow the user a high
usability, in the background the XFTA tool should be used for analysis.

Acceptance Criteria The user is able to configure the path to the XFTA tool which should be
used for analysis. The analysis should contain calculation of the probability that the top
event occurs and of all minimum cutsets with it’s respective probability.

Stakeholders User

4.5 Editors
Author: Tim Sanwald

4.5.1 Textual Editor (#8)

Description In order to edit the models defined in 4.3.1 the user should be able to create
and change the models in a comfortable way. Thus, Co Wolf must support a textual

31

4. Requirements

editor, which supports all functions defined by the Ecore Model to let the user easily
create a valid Model Instance.

Acceptance Criteria A textual editor exists for each Ecore Model defined in 4.3.1 and support
add, delete or edit operation.

Stakeholders User

4.5.2 Graphical Editor (#9, #10, #38, #183, #184, #185, #186, #187)

Description Some models are too complex or too big for working with a textual editor.
In such cases a graphical editor should be implemented for each of the in previously
defined models (cf. 4.3.1).

Acceptance Criteria For every supported model a graphical editor is provided which sup-
ports the most common used add, delete and edit operations of the model. The
representation of the models must be similar to the illustrations in scientific papers.

Stakeholders User

4.5.3 Side-by-Side Editing (#10)

Description In the practical use of a modeling tool, most changes are done in a graphical
editor, just because it’s more comfortable and easier. Nevertheless sometimes the user
wants to do an operation which is not supported by the graphical editor. In fact of this
it should be possible to work with both editors on the same Model Instance.

Acceptance Criteria The user can open both editors, graphical and textual, simultaneously
and if he edits the model in one of them and saves, the changes are reflected in the
other editor.

Stakeholders User

4.6 Evolution
Author: Tim Sanwald

4.6.1 Difference between Models (#16, #128)

Description Changes in the development of a model must be shown with the differences
obtained from SiLift to inform the user about changes since the last version. Also, it
should be possible to see the complete evolution of a model, which can be achieved by
calculating the differences between succeeding versions of the model. Thus, the user
can verify the co-evolution manually and get informed about the changes in the models.

32

4.7. Co-Evolution

Acceptance Criteria The user can choose two or all versions of a model and start the
difference calculation which is done in the background. Afterwards the results are
presented to the user.

Stakeholders User

4.7 Co-Evolution
Author: Tim Sanwald

4.7.1 Unidirectional (#132, #237)

Description Unidirectional co-evolution is used if the reverse direction makes no sense or is
not needed. To proof the concept of unidirectional co-evolution based on the Co Wolf
framework, incremental transformations for the following pairs shall be explored and
implemented:

Ź Sequence Diagram to LQN

Ź Fault Tree to CTMC based on [BCS07]

Acceptance Criteria The user can create a valid model and run the co-evolution through an
entry in the context menu. A wizard appears which allows the user to select the targets
for the co-evolution. Only possible targets for the transformation should be electable.
The directions which are possible are characterized in the description. On finish, the
co-evolution is called and the specified target models evolves to fit the source model.
The user is informed about the changes of the target models.

Stakeholders User

4.7.2 Bidirectional (#13, #131)

Description In contrast to Section 4.7.1 some transformations should be possible for the
reverse direction, too. Thus, the following combinations should contain co-evolution in
both directions:

Ź State Chart and DTMC

Ź DTMC and CTMC

Acceptance Criteria Analog to the acceptance criteria in Section 4.7.1, except that it must be
fulfilled in both directions.

Stakeholders User

33

4. Requirements

4.7.3 Integrating Existing Rules (#130)

Description In addition to unidirectional and bidirectional co-evolutions it should be pos-
sible to easily integrate existing rules. Thus, the transformation from Component
Diagrams to Fault Trees from Ensure project should be integrated into Co Wolf to
demonstrate the concept.

Ź Component Diagram to Fault Tree

Acceptance Criteria Analog to the acceptance criteria in Section 4.7.1.

Stakeholders User

4.7.4 Inconsistency Detection (#14)

Description Co Wolf should prevent inconsistencies in model relations. To do this it’s
necessary to inform the user about models which may be outdated. This means an
associated model has changed.

Acceptance Criteria The user gets informed with Eclipse markers, whenever an associated
model of a model changes and a co-evolution is required to keep consistency between
the models. The user can then decide whether or not he wants to update the target
model.

Stakeholders User

4.8 Maintenance Preparations
Author: Tim Sanwald

4.8.1 Architecture Design (#1)

Description For a well documented framework it’s mandatory to have an up-to-date archi-
tecture of the system. This reduces the time new developers need to become familiar
with Co Wolf and illustrates structural problems before they are implemented. Thus, it
improves the maintainability and usability of the system.

Acceptance Criteria The system’s architecture is represented in a component diagram.
Furthermore, the model shows the Eclipse plugin based architecture, the relation
between models, the evolution components and co-evolution components.

Stakeholders Maintenance engineer

34

Chapter 5

Foundations and Technologies

To develop Co Wolf we used some secondary foundations and technologies to support us.
First of all we used the Eclipse Modelling Framework to create and edit the meta models.
Further we used Sirius for all graphical editors. To transform the models we needed SiLift
and SiDiff for the differences and Henshin for the transformation rules.
To be able to analyse the models we used PRISM for CTMC and DTMC, xFTA for Fault
Trees and the LQN Solver for LQN models. A detailed description of all used tools follows
in this chapter.

5.1 Eclipse-Plugins

We used several Eclipse plug-ins for our development, i.e., EMF, xText and Sirius. They are
described in the next section.

5.1.1 Eclipse Modeling Framework
Author: Jonas Scheurich

To support the different models in the eclipse environment an implementation of the
meta model, the edit operations and a special editor is required. The Eclipse Modeling
Framework delivers a graphical or tree view based editor to create meta models.

Ecore Meta Models

Meta models created with EMF are called Ecore Metamodels. This meta models are stored
in the xmi format. Meta models can be created by a treeview editor or a graphical editor
(see Figure 5.1).

Ź Class: A class describes an object in the model instance and contains attributes and
references. Classes are able to inherit from other classes.

Ź Attribute: An attribute contains a value of a certain type. The value type is a self-defined
class or a Java type.

Ź Reference: An reference refers to another class, defined in Ecore Metamodels. Every
object instance must be contained into a super object (except the root element). The

35

5. Foundations and Technologies

Figure 5.1. EMF editor with a CTMC meta model.

containment property of a reference describes that the target object of the reference is
contained in the source object of the reference.

OCL Validation

Ecore Metamodels can be annotated with OCL constraints. The annotations can be created
with the EMF editors. But they don’t support live validation of the constraints. The eclipse
plugin OCLinEcore [OCL14] delivers a textual metamodel editor based on xText. This editor
supports live validation for the OCL statements. OCL statements can be placed in every
class to test constraints of the class or the subclasses. They are executed in the validation
process of the treeview or graphical editors. In this validation process the multiplicities of
the references and data types are validated, too. The results are shown in the errors view
of eclipse and with markers on the model objects in the editor.

Java Code Generation

The main feature of EMF is the code generation from an Ecore Metamodel. An EMF
genmodel defines properties such as the file extension, project and package IDs, etc. The

36

5.1. Eclipse-Plugins

following projects are generated from a meta model:

Ź Metamodel Implementation: The implementation contains Java interfaces and classes
for each Ecore class. The Java classes contains fields and lists in accordance to the Ecore
classes. To instantiate Java objects of the generated classes EMF generates a factory.

Ź Edit Operations: The edit project contains a provider class for Ecore class to perform
changes on a model instance.

Ź Model Editor: The editor project contains the treeview editor with all necessary re-
sources.

Ź Test Stubs: The test project contains stubs to create own test cases.

5.1.2 Xtext
Author: David Steinhart

Xtext is an open-source framework for language development and defining domain-specific
languages. When a DSL is defined, Xtext automatically creates a parser and a customizable
Eclipse-based IDE. This also includes a standalone text-field editor which contains live
validation for the DSL. When errors in the DSL-instance are found, these are highlighted in
the editor. The editor supports auto-completion and syntax highlighting.
Xtext is being developed in the Eclipse Project as part of the Eclipse Modeling Framework
Project and is licensed under the Eclipse Public License. [Xte]

5.1.3 Sirius and GMF
Author: Johannes Wolf

Sirius is an Eclipse project which is created by Thales and Obeo [Sir]. Sirius uses GMF
for the graphical representation and is a fast way to create graphical editors for domain
specific models. It is already used by several modeling tools like the Obeo UML designer.
In our case we coudn’t use the Obeo UML designer because we used self defined meta
models except for the sequence diagram.

The advantages of Sirius are, that you can define a graphical editor directly in your
workbench and it will be interpreted during runtime. So you can see a direct feedback
while developing the graphical editor without compiling (except for the extension with
own Java code). Figure 5.2 shows the workbench for developing a graphical editor with
Sirius.

With Sirius it is possible to define node-link diagrams, sequence diagrams, tree views
and tables. The definition of the editor is contained in a single .odesign file and no code
creation is necessary. It is also possible to use self defined Java services or extend the editor
with external components.

Sirius also provides synchronization between the graphical editors and the treeview
editor of EMF. This is necessary to provide consistency in the model while editing it in

37

5. Foundations and Technologies

Figure 5.2. The Eclipse workbench with the Sirius editor definition on the left side and the graphical
feedback on the right side

different editors. Additionally, Sirius is able to display problems which are caused by OCL
constraints directly in the graphical editor [Sir].

5.1.4 Henshin
Author: David Krauss

Henshin is a transformation language based on Ecore with rich graphical tool support. It
is part of the Eclipse Modelling Framework. Transformations are represented by Henshin
rules and control units, which control the execution of multiple rules. The procedure of
transforming a graph is to find a match of a pre-defined structure and replace it with the
desired structure. In general, it is either possible to apply transformations on a single
model (endogenous) or on at least two models (exogenous). Co Wolf makes use of many
exognous transformations when co-evolving models.

Transformation Language

In order to specify a transformation there are positive and negative application conditions
(PACs and NACs).

NACs are:

Ź «forbid» The element must not be present in the left hand side graph.

Ź «require» The required element has to be contained in the left hand side graph.

PACs are:

38

5.1. Eclipse-Plugins

Ź «preserve» An element is contained in both, the left and the right hand side graph.

Ź «create» The annotated element is not contained in the left hand side, but created in the
right hand side.

Ź «delete» The delete tag means that an element is matched in the left hand side graph
and is deleted, so it is not in the right hand side graph anymore.

In a Henshin rule, one of these application conditions has to be assigned to each edge,
node and attribute that is represented in a rule to define the left and right hand side
of the transformation. Typically there are two Henshin files, that represent an arbitrary
number of Henshin units. One for the transformation definition and one for its graphical
representation. Instead of editing a transformation graphically, the Henshin file can be
edited in a tree view, too.

One of the main features of Co Wolf is the co-evolution among different models. This is
done by finding out the source model’s differences and applying the appropriate changes
to a corresponding target model by transformations. To achieve this, Co Wolf needs to
maintain a set of traces between models. A trace is an element that connects two arbitrary
EMF-Objects. When transforming changes from a source to a target model, Co Wolf knows
where to apply the changes at the target model.

Problems with Henshin 1.0

There are several problems using Henshin 1.0:

Ź The graphical editor of Henshin causes intensive computing when changing and visual-
izing large diagrams.

Ź Copying elements sometimes destroys the previous layout. This is why large Henshin
files have to be handled carefully.

Ź Make sure that the model you are transforming is an instance of the same meta model,
which you defined the transformation for. If this is not the case, there may occur errors
during the transformation.

Ź Henshin units are suitable to control the sequence of multiple transformations to a
certain extent. If there are complex transformations with multiple rules, it might be
advisable to control the flow of Henshin rules by java code. Henshin control units may
become difficult to maintain, because changing a big set of units is an uncomfortable
activity.

Ź Accessing the order of multi references is possible by using the [i] syntax. You can
access the last element of a multi reference with the index -1, however it is not possible
to move elements to this index. This is a problem if you want to iterate through a multi
reference list, from the first to the last element.

39

5. Foundations and Technologies

5.1.5 SiDiff
Author: Michael Zimmermann

Co Wolf needs to find correspondences and differences between two model versions. SiDiff
[Sof14a] is a tool that offers these functionalities. It was implemented by the Software
Engineering Group of the University of Siegen. SiDiff is realized upon OSGi and is available
as Eclipse plug-in. An advantage of SiDiff is the possibility to adapt it to your own needs.
For example, there are different matchers available to compute the correspondences of two
model versions [Sof14c]:

Ź ID-based matcher which only matches if elements of both models have equal UUIDs.

Ź Signature-based matcher that uses the signatures of elements. These signatures are
calculated based on the attribute values and the relations of the elements.

Ź Similarity-based matcher that calculates similarities between model elements (e. g., based
on their attributes). Details of what should be used to compute the similarity and how
it should be weighted can be configured.

The result of the matchers are correspondences between elements of a model A and
elements of a model B. After computing the correspondences a difference engine is executed
searching the elements of a model that are not part of a correspondence. Thus, created,
removed or changed objects, references or attribute values can be detected. The thus
determined difference can be seen as a low-level or technical difference and is called
symmetric difference in the SiDiff context. Other tools, for example SiLift, can make use
of this calculated difference as input for their own work. SiLift will be presented in the
following section.

5.1.6 SiLift
Author: Michael Zimmermann

A technical or low-level difference of two models can be hard to understand, especially
if more than one element was created, removed or changed. Hence, in order to help
developers to comprehend changes in a model the low-level difference needs to be treated
to be easily understandable.

A tool that can semantically lift the low-level changes onto a higher abstraction level
is SiLift [Keh+14a]. Semantic lifting means, that the low-level differences of the models
are lifted into representations of user-level edit operations. Instead of a lot of technical
differences between two models only, SiLift can show which edit operations were done
by the user. Thus, SiLift makes it easier to understand model evolution. As SiDiff, SiLift
is also developed by the Software Engineering Group of the University of Siegen and
available as an Eclipse plug-in. Edit operations are defined and detected using Henshin
rules. Figure 5.3 shows an example edit rule for the Continuous-Time Markov Chain
(CTMC): The Henshin rules first tries to match a CTMC element and creates (if found)

40

5.1. Eclipse-Plugins

Figure 5.3. Edit operation defined as Henshin rule. It describes the creation of a State in a CTMC.

Figure 5.4. Processing pipeline of SiLift [Keh+14b].

a new State with the specified attributes in it. This small example edit rule contains all
implicit low-level changes like creating the attributes exitRate, Id and name as well as
creating the new reference States. SiLift distinguishes between atomic and complex edit
rules. Atomic edit rules can’t be reduced into smaller rules. Complex rules, however,
consist of two or more atomic rules and are able to lift the differences on an even higher
abstraction level than the atomic rules. In UML, a complex rule would be for example, a
refactoring operation pullUpAttribute, that deletes an attribute in all subclasses and adds
it in the superclass. Atomic edit rules for SiLift can either be created manually or easily
generated using the SiDiff Edit Rule Generator (SERGe) [Rin14]. Complex edit rules need
to be created manually as it requires a very good model knowledge.

As the edit rules would change the models instead of detecting the defined edit
operations, they need to be transformed into so called recognition rules. Recognition rules
are Henshin rules themselves and are automatically generated by SiLift based on the edit
rules. They are needed to detect if an associated edit rule was executed.

Figure 5.4 shows the four main steps of the SiLift difference processing pipeline

41

5. Foundations and Technologies

[Keh+14b]:

1. Matcher

The first step in the pipeline is the model matcher. The model matcher searches for
objects in the two model instances that are corresponding to each other. There are
different matching engines existing (e. g., the SiDiff engine), but you can implement
your own one or adapt an existing engine, too.

2. Difference Derivator

The second step is the Difference Derivator. Here the low-level difference, or so called
technical difference is built. The low-level difference consists of objects, references or
attributes that are deleted or created, as well as changed values of object attributes.

3. Operation Detection Engine

The next step is the Operation Detection Engine. Here the Semantic Lifting is performed.
Therefore, the Operation Detection Engine detects groups of low-level changes, repre-
senting a high-level edit operation. The generated recognition rules are used as input
here.

4. Difference Presentation UI

Finally there is the Difference Presentation UI, that helps the users to inspect the lifted
model differences and thus to comprehend the evolution of the model.

5.2 Model Analyzer

This section describes the external tools we used to analyse the quality of service models.
We used PRISM, xFTA and a LQN solver. The sections describe what the solvers do and
how we access them.

5.2.1 PRISM
Author: David Steinhart

PRISM is a probabilistic model checker. It is used to perform reliability and performance
evaluation. For DTMCs the probability to end up in a failure state can be calculated. Using
a CTMC representing the time-based behavior of the software system, the performance of
different use cases can be evaluated.
As PRISM is not available as an Eclipse plugin, the user needs to manually install it before
he can perform verifications. PRISM offers a graphical user interface and a command line
interface; the later one is used to access PRISM programmatically. The DTMCs/CTMCs
are transformed to a PRISM-readable format using Xtend. As PRISM does not provide an
API, the results are saved to a file and need to be parsed afterwards. [Pri]

42

5.2. Model Analyzer

Figure 5.5. XFTA model and script files

5.2.2 xFTA
Author: Manuel Borja

Developed by the Computer Science Laboratory of the Ecole Polytechnique in France, xFTA
[Rau12] is a program which allows to perform a variety of probabilistic calculations and
simulations on a Fault Tree model written in the Open-PSA format [ER08]. XFTA takes
two files as input: one containing the Fault Tree model and another with configuration
parameters and execution setup. Both of them are XML files. In Figure 5.5 a simple
example of both Fault Tree model and script files are presented.

An xFTA execution session consists on the following steps [Rau12]:

1. The model is loaded.

2. The model is normalized. That means, the common failure causes are expanded, the
constants are propagated, etc.

3. The minimal cutsets of the top event are calculated.

4. Further probabilistic calculations simulations are performed always based on the mini-
mal cutsets.

XFTA allows to performe the following probabilistic calculations:

Ź Top-event probability

43

5. Foundations and Technologies

Ź Importance factors of basic events

Ź Marginal Importance Factor

Ź Critical Importance Factor

Ź Diagnosis Importance Factor

Ź Risk Achievement Worth

Ź Risk Reduction Worth

Ź Sensivity analysis

Ź Safety integrity levels for low demand and high demand system

5.2.3 LQN Solver
Author: Manuel Borja

The LQN Solver from the University of Carleton is a set of tools intended to solve LQN
models and perform simulations on it. Furthermore, offers a couple of utility tools which
allow to transform the models from one format to another. The following programs are
included in the LQN Solver:

Ź lqn2x: transforms a model in LQN format to another format and vice-versa. The
supported formats are xml, ps an emf

Ź lqns: solve a lqn model

Ź lqnsim: runs a simulation on the LQN model

In order to perform LQN analysis, Co Wolf uses just the analytic LQN solver program
(lqns). It receives an LQN model file written in LQN format and writes the results into an
output file. In the analysis the LQN Solver calculates:

Ź Throughput bounds

Ź Mean delay for rendezvous and send-no-reply requests

Ź Mean delay for joins

Ź Entry service times and variances

Ź Distributions for the service time

Ź Task throughput and utilization

Ź Processor utilization and query delays

44

5.3. Logback and SLF4J

The LQN Solver uses the Mean Value Analysis (MVA) algorithm to perform the analysis
on the model. Analysis parameters like number of iterations, minimum convergence value,
pragmas, etc. can be defined both in the model and as program’s arguments. LQN Solver
performs a series of measurements iteratively on the model giving as a result a series of
calculations associated to the elements of the model [Fra99].

5.3 Logback and SLF4J
Author: Rene Trefft

For logging messages and exceptions in Co Wolf the logging framework Logback is used
which is intended as a successor of log4j [GPH14]. It provides a better performance and less
memory consumption than log4j [GPH14]. Logback is highly customizable and supports
many appenders which are output destinations, e. g., the console, files and sockets [GPH14].
The following logging levels [GPH14] are provided by Logback:

Ź TRACE: For code tracing of a developer.

Ź DEBUG: For diagnosis purposes of a developer or an administrator.

Ź INFO: A normal significant message, e. g., the start of a system or a procedure.

Ź WARN: A non-regular progress, e. g., the same operation will be executed again.

Ź ERROR: Program or operation can’t continue; needs user interaction.

Logback natively implements the Simple Logging Facade for Java (SLF4J) which is an
abstraction for various logging frameworks. Logback must be used in conjunction with
SLF4J. [Slf]

45

Chapter 6

Models

Software systems can quickly become very complex. That’s the reason why models get
more and more important. They can help to simplify complex processes and connections,
and focus on the important points in a certain aspect. Models can describe software
processes, requirements, dangers and much more. There are several types of models which
focus on just a few aspects each. Therefore to model a whole project, you need several
different models.

Co Wolf includes different model types which can be divided in two main classes:
Architecture Models and Quality of Service Models. This chapter only describes the models
themselves, the transformations and implementations are described in Chapter 7 and 9.

6.1 Software Architecture Models

The architecture of a software describes its top-level structure. It divides a software in
components and how they interact with each other. In this project we support three
architecture model types: component diagrams, state charts and sequence diagrams.

6.1.1 Component Diagram
Author: Jonas Scheurich

Components diagrams are structure diagrams to show the different components of a
software system and their connections. The connections are represented by ports and
interfaces. Figure 6.1 shows an overview of a component diagram.

47

6. Models

Figure 6.1. Overview of a component diagram. [Sd]

In the following the main elements are described and which of them we implemented
in Co Wolf .

Main Elements

Component A component, shown in Figure 6.2 represents a subsystem of a software-system.
A component provides ports with interfaces to connect to other components.

Figure 6.2. A component [Sd]

Interface A interface represents connections to other components with well defined func-
tionality.

Ź Provided Interface A provided interface, (see Figure 6.3) supports functionality of
the component. The provided interface can be realized by a required interface. In
the following two types of interfaces are described.

48

6.1. Software Architecture Models

Figure 6.3. A provided Interface [Sd].

Ź Required Interface A required interface (see Figure 6.4) uses a given interface of a
second component.

Figure 6.4. A required Interface [Sd].

Connector A connector connects one or many required interfaces with a provided interface.
In the following the two types of connectors are described.

Ź Simple Connector A simple connector (see Figure 6.5) connects a required interface
and a provided interface.

Figure 6.5. A simple connector [Sd].

Ź Multi Connector A multi connector (see Figure 6.6) connects many required inter-
faces with one provided interface.

Figure 6.6. A multi connector [Sd].

6.1.2 State Charts
Author: Jonas Scheurich

A state charts is a deterministic machine. A state chart contains states and transitions to
visualize the different states of a software system or a sub component of a software system.
Figure 6.7 shows an overview of a statechart.

49

6. Models

Figure 6.7. Overview of a statechart.

Main Elements

State Machine A statemachine contains transitions and states and represents the software-
system. The statemachine also defines the inital state. Figure 6.8 shows an empty state
machine.

Figure 6.8. A statemachine.

State A state (see Figure 6.9) represents a state of the software system. The state is active if
a transition to the state is activated.

Figure 6.9. A state.

Composite State A composite state (see Figure 6.10) is similar to a state. Additionally the
composite state contains some states and transitions. The initial state will be activated
if the composite state is activated.

50

6.1. Software Architecture Models

Figure 6.10. A composite state.

Entry An Entry (see Figure 6.11) call to a state machine which is executed on state
activation.

Figure 6.11. An entry state.

Exit An Exit (see Figure 6.12) call to a state machine which is executed on state deactivation.

Figure 6.12. An exit state.

Do Action An Action (see Figure 6.13) calls to a state machines if the entry action is done.

Figure 6.13. A do action.

Transition A transition (see Figure 6.14) deactivates the source state and activates the target
state.

Figure 6.14. A transition

6.1.3 Sequence Diagram
Author: Verena Käfer

Sequence diagrams are interaction diagrams. They focus on the sending of messages
between lifelines. Figure 6.15 shows an overview of the possible elements in a sequence

51

6. Models

Figure 6.15. Overview of a sequence diagram. [Sd]

diagram.
In the following the main elements are described and explained which of them we

implemented in Co Wolf .

Main Elements

Figure 6.16. A lifeline header [Sd]

Lifeline A lifeline represents an individual participant in the whole interaction. Lifelines
(See Figure 6.16) can be divided into class- and actor-lifelines. Actor-lifelines represent
an external actor, like a human, who starts single interactions. Class-lifelines represent

52

6.1. Software Architecture Models

class instances and can be called by actor-lifelines or executions of other class-lifelines.

Messages In general, messages define the communication between lifelines. A message
starts on a lifeline or an execution and ends in a new execution. There are several
message types.

Ź Synchronous Call This kind of message represents a synchronous call to another
lifeline. It always gets an answer (See Figure 6.17). The message starts an execution
and at the end of the execution the reply message is sent back. The original sender
has to wait for the answer before it is able to send a new message.

Figure 6.17. A synchronous call with its reply message [Sd]

Ź Asynchronous Call Asynchronous messages need no reply (See Figure 6.18). They
just start a new execution.

Figure 6.18. An asynchronous call [Sd]

Ź Create Message This kind of message creates a new lifeline as int can bee seen in
Figure 6.19.

Figure 6.19. A message which creates a new lifeline [Sd]

53

6. Models

Ź Delete Message With this type of message the receiving lifeline is deleted as shown
in Figure 6.20.

Figure 6.20. A message which deletes the receiver [Sd]

Execution A message always creates an execution on the receiving lifeline (See Figure 6.21).
During an execution it is possible to send further messages. An execution may have a
reply message at its end.

Figure 6.21. An execution on a lifeline with its start and end point [Sd]

Interaction Fragment An interaction fragment is a square in a sequence diagram which
specifies a different behaviour than the default behaviour. Following the different types
of interactions are described.

Figure 6.22. A sub-sequence which is executed several times [Sd]

54

6.2. Quality of Service Models

Ź Loop It is possible to model looping behaviour in an interaction fragment (See Figure
6.22). The fragment contains the looping behaviour and the condition specifies howl
long the behaviour is repeated.

Ź Alt Conditional behaviour can be modeled in an alternative fragment as shown in
Figure 6.23.

Figure 6.23. Two alternative behaviours depending on the condition [Sd]

Restrictions in CoWolf

In Co Wolf sequence diagrams are represented in a graphical editor (Chapter 9.1.2) and
transformed into LQN diagrams (Chapter 7.5). To be able to do this, it would have been
very hard and time consuming to have all existing elements in our meta model. Therefore
we decided to model only the most important elements:

Ź Lifelines

Ź Synchronous and asynchronous messages

Ź Executions

Unfortunately this means that the following elements are not included in Co Wolf :

Ź Create message

Ź Delete message

Ź Interaction fragments

6.2 Quality of Service Models

QoS models are intended to represent non-functional requirements of a software system.
Thus, is it possible to construct a model with a set of elements which represent real objects

55

6. Models

or events that affect, for example, the reliability of a system. Once the model is built, it is
possible to assess, analyze and predict the quality of the system.

The QoS models supported by Co Wolf namely Discrete Time Markov Chain (DTMC),
Continuous Time Markov Chain (CTMC), Layered Queuing Network (LQN) and Fault Tree
will be presented in this section.

6.2.1 Discrete Time Markov Chain (DTMC)
Author: Johannes Wolf

The discrete time Markov chain model is a model to describe states of a system and the
transitions between them. This model is often used for statistical processes with a collection
of random variables. The transitions between the states describe the probability that the
following state will be reached. The transition depends only on the current state and not
on the sequence of the states before. This fact is also called the markov property. The sum
of the outgoing transition probabilities of a state has to be always 1. Therefore in each
discrete time step a transition has to be executed. It’s also possible to have self-referencing
transitions.[Gal] In Figure 6.24 you can see the meta model of the DTMC.

Figure 6.24. The DTMC meta model

Each State can contain one or many labels. This is necessary for the analysis of the
model. For example you can define an end state by using a label called End and calculate
the probability and the amount of time steps to reach this state. To determine the start state,
the Ecore class DTMC contains the attribute initialState which refers to the initial state.

Figure 6.25 shows a simple DTMC model instance which consists of six states. State E is
labeled as an end state.

56

6.2. Quality of Service Models

Figure 6.25. Graphical representation of a simple DTMC model in CoWolf.

The same model can also be described in a mathematical form as the following matrix
of transition probabilities:

P =

PStart,Start PStart,StateA ¨ ¨ ¨ PStart,StateE

PStateA,Start PStateA,StateA ¨ ¨ ¨ PStateA,StateE
...

...
. . .

...
PStateE,Start PStateE,StateA ¨ ¨ ¨ PStateE,StateE

 =

0 1 0 0 0 0
0 0.5 0.5 0 0 0
0 0 0 0.2 0.8 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

6.2.2 Continuous Time Markov Chain (CTMC)
Author: Johannes Wolf

The continuous time Markov chain model ist similar to the DTMC model. The difference is,
that the time is continuous instead of discrete. As you can see in Figure 6.26 the Ecore class
State contains aditionally the attribute exitRate which describes how much time is spend in
a state before a transition. The duration for a transition is represented by the attribute rate
in the Ecore class Transition [Sha]. These rates are described by the following transition rate
matrix:

P =

q0,0 q0,1 ¨ ¨ ¨

q1,0 q1,1 ¨ ¨ ¨

...
...

. . .
...

In this matrix qi, j describes the probability per time unit that a transition from state i to

state j will be executed:

qi,j = lim∆tÑ0
P{Xt+∆t|Xt=i}

∆t , i ‰ j

57

6. Models

Figure 6.26. The CTMC meta model.

Figure 6.27 shows an example model instance of the CTMC. The exitRates displayed in
the brackets inside the states.

Figure 6.27. Graphical representation of a simple CTMC model in CoWolf

6.2.3 Layered Queuing Network (LQN)
Author: Manuel Borja

Layered Queued Network [Fra+13] belongs to the family of extended queuing networks
(EQN). In addition to the standard queuing network models, LQN offers two main capabil-
ities:

Ź Simultaneous use of resources

Ź Element modeling in a layered structure

58

6.2. Quality of Service Models

LQN is getting good acceptance in many areas especially in software engineering.
Techniques like Software Performance Engineering (SPE), make intensive use of queuing
models in order to identify problems within a system and assess its performance [DN93].

Elements

The Figure 6.28 shows a simple LQN model instance. It represents a book store system
consisting of two clients (administrator and customer) and a software system (the bookstore)
which contains a component named ShoppingCart.

Figure 6.28. LQN example

An LQN model consists of the following elements:

Ź Processors: they are resources responsible of doing tasks which consume time. As they
are pure servers, the only receive requests from other servers or clients. An example
for this kind of elements are hardware components like actual CPUs. The Figure 6.29
shows the graphic representation of this component.

The processors are described by the following properties:

Ź Schedule discipline

Ź FIFO: first in, first out

Ź PPR: priority, preemptive resume

59

6. Models

Ź HOL: head-of-line priority

Ź PS: processor sharing

Ź RAND: random scheduling

Ź CFS: complete fair scheduling

Figure 6.29. Graphical representation of a processor

Ź Tasks: Offer the possibility of modeling resources. They can be actual tasks in a software
system, clients, buffers and hardware devices. In order to specify more details about
tasks, different kind of services are modeled with entries. Internal concurrency is
modeled with activities graphs. As seen in the Figure 6.30 a task is represented with a
parallelogram.
The requests can be attended with one of the following policies:

Ź FIFO: first-in, first-out

Ź PPR: priority, preemptive resume

Ź HOL: head-of-line priority

Ź Priority: can have values from zero to positive infinity. Zero is the highest value

Tasks can be classified in three types, namely:

Ź Reference class

Ź Semaphore task

Ź Synchronous task

60

6.2. Quality of Service Models

Figure 6.30. Graphical representation of a task

Ź Entries: They model the actual service request processing. A task can contain many
entries and they can have different behavior. i.e. type, different priority and open arrival
rate. They can accept either synchronous or asynchronous requests. In the case of
synchronous requests, entries must generate a response as well. The Figure 6.31 shows
the graphical representation of an entry.
The parameters of an entry can be defined in two ways: phases or activities. Whereas
by the phases specification the entry’s activities are executed in a sequential way, the
activities description allows to model more complex behaviors between the activities
including elements like join, loops, fork etc.
Independently of the specification method, the behavior of the server with its clients
is made by phase. The first phase contains a complete request-response process. The
following phases can be added and take place after the server response.

Figure 6.31. Graphical representation of an entry

Ź Activities: They are the lowest-level specification of the LQN model. They consume
time on the processor and relate with each other through a directed acyclic graph.
They make requests to other tasks as well and their behavior can be parametrized
with the attribute call order, which can be stochastic or deterministic. Whereas in the
deterministic call order the activity makes an exact number of requests, in the stochastic
call order the number of requests of the activity is a random number. The Figure 6.32
shows an example of an activities graph.

61

6. Models

Figure 6.32. Graphical representation of an activities graph

6.2.4 Fault Tree
Author: Manuel Borja

Figure 6.33. Example of a Fault Tree

62

6.2. Quality of Service Models

System safety has been a matter of concern in different fields like aircraft and aerospace
industries, which for the first time used this approach in order to find heuristics to
determine the causes of accidents before they could occur.
Fault Tree Analysis is a widely used technique to assess safety and reliability. It determines
in a deductive way the causes of an undesirable event. Furthermore their relations and
quantitative properties are established.The result of the Fault Tree Analysis is a Fault Tree
model instance. It shows in a graphical fashion how basic failures combine themselves to
produce a hazard. The Figure 6.33 shows a trivial Fault Tree example.

6.2.5 Elements of a Fault Tree

The elements of a Fault Tree are listed as follows:

Ź Hazard: Also called the top event, it describes the undesirable event to be analyzed.
The Figure 6.34 shows the graphical representation of a hazard.

Figure 6.34. Graphical representation of a hazard

Ź Events: They represent the causes that can trigger the hazard. They can be classified in:

Ź Primary events: Represent root causes of the hazard. In the context to be evaluated
they have not been further developed. They can be classified again in:

Ź Basic events: Represent a basic initiating fault with no further development. The
Figure 6.35 shows the graphical representation of a basic event.

Figure 6.35. Graphical representation of a basic event

Ź Conditioning events: Represent a condition associated to an event. They are used in
conjunction with priority and inhibit gates.

Ź Undeveloped events: It is an event that is not further developed, because of missing
information or because it has insufficient consequences. As can been seen in the
Figure 6.36 the graphical representation of an undeveloped event is a rhombus.

63

6. Models

Figure 6.36. Graphical representation of an undeveloped event

Ź External event: They represent an event which is always expected to happen.

Ź Intermediate events: They represent events with particular behaviour. They are used to
give further description of the behaviour and development of basics events. The Figure
6.37 shows the graphical representation of an intermediate event.

Figure 6.37. Graphical representation of an intermediate event

Ź Gates: Gates are used to permit (or inhibit) the propagation of the fault logic up the
tree. They act like black boxes which receive a set of input events and produce an
output event. The gate’s logic determines under which conditions the errors from the
input events are propagated or not to the output event. Fault Tree model supports the
following gates:

Ź AND: The error is propagated if and only if all the input events occur. The graphical
representation of an AND gate is shown in the Figure 6.38.

Figure 6.38. Graphical representation of an AND gate

Ź OR: The error is propagated if and only if at least one of the input events occur. The
Figure 6.39 shows the graphical representation of an OR gate.

Figure 6.39. Graphical representation of an OR gate

Ź INHIBIT: It is an especial case of the AND gate. The output is caused under certain
condition of the input gate. As can be seen in the Figure 6.40, the INHIBIT gate is
represented with an hexagon.

64

6.2. Quality of Service Models

Figure 6.40. Graphical representation of an INHIBIT gate

Ź XOR: It is a special case of an OR gate, in which the output is produced if and only
if exactly one of the inputs occur. An example of a graphical representation of an
XOR gate is shown in the Figure 6.41.

Figure 6.41. Graphical representation of an XOR gate

Ź PRIORITY-AND: It represents a special case of the AND gate, in which the output is
produced only if the input events occur in a specified sequential order. The graphical
representation of a PRIORITY-AND gate is shown in the Figure 6.42.

Figure 6.42. Graphical representation of an PRIORITY-AND gate

65

Chapter 7

Transformations

Previously was described, which models are included in Co Wolf . Here is described how
the transformations between these models work. There are five different transformations
of which some are bidirectional and the others unidirectional. The sections describe how
the transformations work and what difficulties they contain.

7.1 State Chart to DTMC and Vice Versa
Author: Michael Müller

In opposite to most other transformations (with the exception of the DTMC to CTMC
transformation) discussed later in this chapter, the transformation between State Chart
and DTMC is implemented bidirectional. As one can see in Table 7.1 the rules which
are needed for the transformation between both diagram types are in all cases a simple
bidirectional one-to-one mapping, where traces between elements of different diagram
types could easily be created.
The transformation is implemented only for the topmost states and transitions of a State
Chart model. States and transitions which are part of a composite state are not considered
in the transformation. This doesn’t match for Action elements (Do, Entry, Exit), which can
call another sub-statemachine. For these actions it is needed to find the first parent state
which got transformed to DTMC and connect it by a transition to the initial state of the
called sub-statemachine.

The transformation DTMC to State Chart has essentially the same transformation
mappings applied as described in Table 7.1. Additionally, some restrictions apply here:

State Chart DTMC
State State
Composite State State
Transition Transition
Action (if it has a StateMachine
call)

Transition

Label Label

Figure 7.1. Transformation mapping State Chart Ø DTMC

67

7. Transformations

Ź Created transitions in DTMC always create a transition in the State Chart model. There
is no possibility to create a transition in the DTMC which is mapped to an action in the
State Chart model.

Ź Created states in DTMC always map to a state in the main sub-statemachine in the
State Chart model, if there is no existing trace to a state elsewhere. It is not possible to
transform a created state into another sub-statemachine.

A Problem of this transformation is the time-consuming activity of adding the correct
probability to each transition automatically, as this information cannot be extracted from
a transition in a State Chart model. Additionally, the created DTMC model is far more
confusing compared to the State Chart model because it is not possible to arrange the
DTMC in several sub-DTMCs (cf. sub-statemachines in State Chart). Also unlike in a State
Chart model, transitions can not be named in a DTMC model.

7.2 CTMC to DTMC and Vice Versa
Author: David Krauss, Verena Käfer

The transformation between CTMC and DTMC is the easiest implemented transformation.
Every CTMC state equates to a DTMC state, every CTMC transition equates to a DTMC
transition and every CTMC label equates to a DTMC label. The only difference is, that
CTMC states have an exit rate (For further details on the models see 6.2.1 and 6.2.2). The
exit rate is calculated automatically from all outgoing transitions of a state. The probability
of a transition is transferred among both model types equally. Furthermore each transition
t, outgoing from a state s, in a CTMC contains a rate. This rate is calculated by:

t.rate = t.prob ˚ s.exitRate (7.1)

Both models have the same elements, changes can be directly applied from source to target
model in both directions (CTMC to DTMC and DTMC to CTMC). The mapping from a
difference to the execution of a Henshin unit is defined by a transmap XML file (see 12.3.2).
Following is an example for the one to one relation of both models:

When there is a newly created State in a CTMC model, SiLift will detect a change called
CREATE_State_IN_CTMC. The transformation then looks at the CTMC-DTMC mapping
XML file and executes the specified Henshin unit called CreatedStateInCTMC. This Henshin
unit creates a new state in the DTMC target model, which is correctly connected to its
source state in the CTMC by a trace object. Every difference in the source model, that has
an impact on the target model is mapped to a Henshin unit in the transmap file. Thereby
both models are kept well consistent.

68

7.3. Fault Tree to CTMC

7.3 Fault Tree to CTMC
Author: David Krauss, Michael Müller

The transformation from Fault Tree to CTMC is an unidirectional transformation. Using
this transformation it is possible to analyze a Fault Tree regarding the reliability of the
described system.

Some general properties apply to this transformation:

Ź An hazard creates always two states in the CTMC, the initial state and an absorbing
state in the CTMC model.

Ź Gates created under another gate need a pseudo state which is replaced by its developed
CTMC representation at the end of the transformation process.

The transformation process mainly focuses on the development of the following de-
scribed patterns. The gate patterns can be divided in two parts. One part comprises the Or
and And gate, where the order of occurred events doesn’t matter and the other part is the
PriorityAnd gate which takes the order of event occurrence into account.

This transformation is available only for one direction because the reverse transforma-
tion of these patterns is only possible with a huge amount of effort. Also, one could not
rely on the information provided by the user as one single failure in entering transition
possibilities or targets could break an entire pattern which represents a gate. Additionally,
it is unusual to directly modify an CTMC model (apart from transition rates) rather than
only use it for analysis purposes.

7.3.1 Or Gate and And Gate Pattern

Hazard

A B

start
(0.9)

exit
(1.0)

B
(0.3)

A
(1.0)

A
(0.6)

B
(1.0)

«init»
Hazard
begin
(1.0)

Hazard
occured

(0.0)

0.6666667

0.33333334

1.0

1.0

1.0

1.0

1.0

1.0

Figure 7.2. And Gate

69

7. Transformations

New Hazard

BA

start
(0.9)

exit
(1.0)

A
(1.0)

B
(1.0)

A
(1.0)

B
(1.0)

«init»
Hazard
begin
(1.0)

Hazard
occured

(0.0)

0.33333334

0.6666667

1.0

0.625

0.375

0.7692308

0.23076925

1.0

1.0

1.0

Figure 7.3. Or Gate

Both patterns are very similar in terms of transformation rules. As they both allow
every sequence of occurring events to be valid, every permutation of events is created in
the CTMC model, as can be seen in Figures 7.2 and 7.3. To ease the transformation process,
states which could be visualized as one state are represented as individual states. Merging
them would only aid the visualization but the representations are equivalent. Thus the
transformation can be implemented with an approach similar to a depth-first search. At
the current state it is always known which events already happened. All Events, that
didn’t occur in the branch up to the current state and additionally are not connected by a
transition from the current state, are added to the graph and have a transition is created
between the current and the new state.

Compared to the And gate pattern, the Or gate pattern creates an edge from every
state, which is not the initial state, to the exit state of the pattern. While the transition
probability between states can be directly transformed from the fault tree event associated
with the CTMC state, this is not possible for edges from these intermediate states to the exit
state. After the transformation process where all single gates are developed independently
without knowledge of other existing gates, they are copied and inserted at places where
pseudo states were created instead of the gate.

7.3.2 Priority And Gate Pattern

The Priority And gate requires the incoming events (A and B) to occur in a defined order
to trigger the top event/hazard. The instance of the gate holds a list of incoming events,
which defines the order in which the incoming events have to occur. In Figure 7.4 event
A has to occur prior to B, otherwise the hazard will not occur. If B occurs first, there is
no path to the hazard state anymore. The implementation has problems when connecting

70

7.4. Component Diagram to Fault Tree

New Hazard

A B

start
(1.0)

New Hazard
occurs
(1.0)

B has failed
(1.0)

A has failed
(1.0)

B has failed
(1.0)

0.3

0.6

1.00.6

Figure 7.4. Priority And Gate

other gates as input to a Priority And gate, because it is not clear how to find out about the
order of input events and input gates. To receive an ordered list of events and gates, the
meta model has to be changed first.

7.4 Component Diagram to Fault Tree
Author: David Krauss, Manuel Borja

One of the purposes of transforming a component diagram model into a Fault Tree model
is to represent and assess the safety of the system described in the architectural model. This
is made by establishing which components can be point of failure, and how they propagate
a failure along the remaining components. The implementation of this transformation has
been carried out unidirectional only because changes in the component diagram necessarily
result in changes in the Fault Tree but not the other way round. If there is any new
component, there can always be a new failure or an error event. If any of the components
is removed, it obviously cannot fail anymore, so the corresponding events cannot occur
and have to be deleted accordingly. Changes in the Fault Tree however, do not necessarily
have an impact on the structure of the system. If there is a new event in the fault tree, we
do not want to create a new component in the component diagram in general and there is
no reasonable mapping that could apply for any change principally.

7.4.1 Implementation

Unlike the other transformations supported by Co Wolf , whose rules and mappings are
implemented totally in Henshin, the transformation patterns for the co-evolution from
component diagram to fault tree have a big part of its logic written in Java and are
supported by a set of granular Henshin rules. In a standard co-evolution the following
tasks are performed:

71

7. Transformations

Ź Read the component diagram model.

Ź Read the Fault Tree model.

Ź Identify new elements in component diagram model.

Ź For every new element and based on the transformation patterns, determine which
transformations need to be performed and then execute it. As a result there will be new
events, gates and relations between them in the Fault Tree model.

Ź Based on the new elements in the Fault Tree, perform further transformations to keep
the fault tree model consistent.

7.4.2 Transformation Patterns

New Component Instances

New component instances in the component diagram lead to new error or failure instances
and new basic or intermediate events in the Fault Tree model.

This transformation pattern describes the way a component instance in the component
diagram model has to be reflected in the Fault Tree model. As components can be points of
failure in a system, every component corresponds to either a basic or an intermediate event.
Furthermore they are associated with either an error type or a failure type respectively.
Figure 7.5 shows an example of this transformation among with the new connections pattern
described in the following section.

Figure 7.5. New component instances pattern

New Connection between Components

New connection in the component diagram leads to new connection between events in the
Fault Tree model.

72

7.4. Component Diagram to Fault Tree

This transformation pattern treats new connections between two component instances in
the component diagram. In principle, a new connection between two component instances
(out-port to in-port) intrinsically establishes an unidirectional dependency between them. If
the independent component fails, the error is propagated to the dependent component, i.e.,
the dependent component fails, too. Thus, in the safety model the dependent component
must correspond to a basic event and the independent event must correspond to an
intermediate event. Figure 7.6 shows an example of this pattern.
Here, the complexity resides in the fact that there might be intermediate or basic events
which are already connected to gates or another intermediate events. Nevertheless, the
logic of the propagation error is maintained and eventually basic events will be transformed
into intermediate events.

Figure 7.6. New connections pattern

New Connection between Components II

New connection between software component and sensor component leads to top interme-
diate event.

This pattern is applied when there is a new connection between two components which
are of type sensor and software component. These two components need to be contained
by the same parent component in order to apply the pattern. It creates two events at
the Fault Tree side, corresponding to the sensor and the software component. Both are
connected to an OR gate with an output intermediate event on top of it. Whenever there
are already existing events at the Fault Tree side, which might be already connected to any
other element, the pattern needs to adapt to the current situation. Figure 7.7 shows an
example of this pattern.

73

7. Transformations

Figure 7.7. New connection between sensor and software component pattern

7.4.3 Connecting the Hazard to the Remaining Fault Tree

Since there are arbitrary connections and nestings of the component instances in the
component diagram, there might be several partitions in the corresponding Fault Tree.
Thus, it is necessary to connect all parts of the Fault Tree to the hazard. We create an
AND gate as an input gate for the hazard event. This implies that the top hazard only
occurs if all of its underlying components have failed. All events which correspond to a top
level component instance and have no incoming connection will be linked to this very top
AND gate. The semantics are, that all component instances with incoming connections are
used by the connected components and because of this, if the component fails, the calling
component will fail, too. In short, component instances with incoming connections will
result in a failure or an error event with an outgoing connection in the Fault Tree and vice
versa.

7.5 Sequence Diagram to LQN
Author: Jonas Scheurich

The transformation between sequence diagram and LQN is implemented only to the LQN
direction. This transformation is an unidirectional transformation, but the implementation
of the back direction LQN to sequence diagram don’t improve the proof of concept of
the Co Wolf project, because the transformation items are in a one-to-one relationship for
witches we already proved bidirectional in 7.2. Thus way we describe only the implemented
direction.

We implemented the transformation sequence diagram to LQN based on the description
of [CDMI11]. Cortellessa et. al. present a transformation that performs a three to one
transformation: Activity diagrams, component diagrams and sequence diagrams to LQN.

74

7.5. Sequence Diagram to LQN

The Co Wolf co-evolution framework only supports one to one transformations at the
moment (see Chapter 9.5). We changed the transformation of [CDMI11] to a sequence
diagram to LQN transformation, described in the following sections.

7.5.1 Initial Preparation of the LQN Model

Figure 7.8. All created tasks are related to the CPU processor.

A sequence diagram supports no information about the machine the software is running
on. Sequence diagrams are class based. So we assume, that the classes in a sequence
diagram are running on a CPU and associate all tasks, mapped from a lifeline in a sequence
diagram, to a CPU processor in the target LQN. In the first step of every sequence diagram
to LQN transformation Co Wolf checks if a CPU processor is part of the model and creates
new processor named "CPU" if it is missing as shown in Figure 7.8.

7.5.2 Sequence Diagram: Lifelines

Figure 7.9. Each lifeline will be transformed to a task.

Every lifeline in a sequence diagram is mapped to a new task and a new entry type in
a LQN, shown in Figure Section 7.9. The new task is associated to the default processor
created in 7.5.1. Co Wolf allows the user to change the processor of a task without influencing
further co-evolutions.

75

7. Transformations

7.5.3 Sequence Diagram: Synchronous Messages

Figure 7.10. All synchronous messages between two lifelines (unidirected) are transformed to one
synchronous call in a LQN model.

All synchronous messages directed from a lifeline l1 to a lifeline l2 in a sequence diagram
are mapped to exactly one synchronous call in LQN (see Figure 7.10). The source task of
the call is the task mapped from lifeline l1, the target task of the synchronous call is the
task corresponding to lifeline l2.

7.5.4 Sequence Diagram: Asynchronous Messages

Figure 7.11. All asynchronous messages between two lifelines (on direction) will be transformed to
one asynchronous call in a LQN model.

All asynchronous messages directed from a lifeline l1 to a lifeline l2 in a sequence diagram
are mapped to exactly one asynchronous call in LQN (see Figure 7.11). The source task of
the call is the task mapped from lifeline l1, the target task of the asynchronous call is the

76

7.5. Sequence Diagram to LQN

task corresponding to lifeline l2.

77

Chapter 8

Architecture

Co Wolf consists manly of five parts: Model, evolution, transformation, UI and core. What
they contain and how they play together is explained in the following.

8.1 Concept and Overview
Author: Jonas Scheurich, Michael Müller

UI

Model

LQ
N

C
TM

C

D
TM

C

Fa
u

lt
 T

re
e

Ev
ol

ut
io

n

Tr
an

sf
o

rm
at

io
n

N
av

ig
at

o
r

...

Transformation

State Chart DTMC

R
u

le
s

...

Evolution

Statechart

Te
ch

n
ic

al

D
if

fe
re

n
ce

Ed
it

 R
u

le
s

DTMC

Te
ch

n
ic

al

D
if

fe
re

n
ce

E
d

it
 R

u
le

s

Model

...

Statechart
[Architecture Model]

EM
F

Ed
it

EM
F

Ed
it

or

Si
ri

u
s

Ed
it

or

DTMC
[Quality of Service Model]

EM
F

Ed
it

EM
F

Ed
it

or

Si
ri

u
s

Ed
it

or

A
na

ly
ze

...

Core

Ex
te

rn
a

l T
oo

ls

Overview of the components. The main-components (oranged filled) of Co Wolf : Core,
Model, Evolution and Transformation. The components of the main-components (blue

filled) e.g. Statechart.

Figure 8.1. Overview of the components.

Co Wolf supports a sample of plugins for the eclipse development environment. Picture 8.1
shows an overview of the Co Wolf -architecture with the main-components Model, Evolution,
Transformation and UI with the containing components (e.g. Statechart). Every component
contains some sub-components with certain functionalities. All main-components, compo-
nents and sub-components are represented by an eclipse plugin.

79

8. Architecture

The main-component Model (see Section 8.2.2, 8.2.3) contains a component for every
supported model (see Chapter 6). A model component (e.g. Statechart) provides the meta
model, the model implementation, the EMF-editor and a graphical editor. For quality of
service models this component contains the analysis, too. The main-component Model is
independent from the main-components evolution or transformation.

The evolution component contains for an associated model the evolution to calculate
the difference between two versions of the associated model type.

The main-component Transformation contains components for every supported co-
evolution type. A Transformation component supports a Co-Evolution in one or both
directions of two associated models. In the Co Wolf -project the transformations are realized
with henshin (see Section 5.1.4). A Transformation component depends on to the two
evolution components of the two associated models.

The main-component Core envelopes functionality that is used widely in other compo-
nents. This comprises mainly utilities, e.g. a command line execution infrastructure and a
version and association management system, as described in Section 9.2.

The main-component UI contains the user interface components for the evolution, the
transformation, the Co Wolf -perspective and some models.

8.2 Models
Author: Manuel Borja

The Models component contains all the logic related with the creation and edition of
architectural and QoS models. In the case of QoS models this component is also responsible
of the model analysis execution, which among others includes the set of activities to call
the external analysis tool.
In order to guarantee cohesion and scalability, the logic of every model resides in a different
component. Thus, we have eight different components which inherit from the components
in the abstraction layer.

8.2.1 Abstraction Layer

The abstraction layer contains the common logic of the Co Wolf component models. It
contains as well the common structure of the supported models. Services like automatic ID
creation for model elements and validation if a model is supported or not are included in
its logic. The figure presents the structure of the abstraction layer

80

8.2. Models

CommonBase

The CommonBase component contains the basic structure of every model supported by
Co Wolf . It is also responsible of the automatic ID-element creation, i.e. every time that
a model’s element is added a new unique not-visible-to-user identifier is created and
assigned to its ID attribute. The automatic ID creation is in general triggered every time
that a model file is saved. This is a necesary and important functionality in order to be capa-
ble of identify how the elements of two co-evolved models are related [see transformations].

Every model supported by Co Wolf has to have the following attributes

Ź ID: unique element’s identifier

Ź Name: name of the element

ModelManager

The ModelManager contains the abstract logic of every architectural and QoS model man-
ager. In general a ModelManager is responsible of the model’s naming and instantiation.
In the case of QoS models the ModelManager contains also the analysis functionality.

ModelRegistry

In the ModelRegistry component resides the list of supported models. It is responsible,
among others, of the instantiation of model managers

8.2.2 Architectural Models

This component contains the structure and logic of every architectural model. The classes
of this component - which are generated with EMF - mirror the structure of the model and
contains the logic related with creation and validation of model’s elements.

The components in this layer are:

Ź Activity diagram

Ź Component diagram

Ź Sequence diagram

Ź State machine diagram

81

8. Architecture

8.2.3 Quality of Service Models

This component contains the structure and logic of every quality of service model. Most
of the classes of this component are generated with EMF too and mirror the structure of
every model as well.
The components in this layer are:

Ź CTMC diagram

Ź DTMC diagram

Ź Fault tree diagram

Ź LQN diagram

Furthermore every component is responsible of the preparation and invocation of the
respective external tool in order to perform the corresponding quality analysis. In general
the analysis process consists of:

Ź Translation: the EMF model is converted to a file in a format suitable for the analysis
tool. This file, which is generated with help of Xtend, is saved into a temporary file.

Ź Script generation: an execution configuration file is generated. It contains the analysis
parameters and the goal of the analysis, i.e. what is desired to be evaluated. In the case
of LQN this information has to be present in the same model file created in the step 1.

Ź Invocation: the programm is run passing as parameters the model and the analysis
parameters.

Ź Read and parse results: the component read the results, which normally resides in a
temporary file. The standard an error output console values are read as well. The results
are iteratively read and transformed to an internal structure.

Ź Write results: The results are written into a html file.

8.3 Evolution
Author: Michael Zimmermann

Co Wolf makes use of the SiDiff (see chap. 5.1.5) and SiLift (see chap. 5.1.6) functionalities
to allow the user to compare different versions of a model, based on low-level changes
but also as semantically lifted high-level changes. For this purpose, SiDiff calculates the
correspondences as well as the technical low-level changes between the different model
versions. SiLift takes this low-level changes and groups them into so called semantic change
sets, a higher abstraction level representing user edit operations.

To enable the evolution feature of Co Wolf for a specific model, besides SiDiff and SiLift
mainly three elements are needed (see Figure 8.2):

82

8.3. Evolution

SiLift

SiDiff

AbstractEvolutionManager

DTMCEvolutionManager LQNEvolutionManager ...EvolutionManager

DTMC Evolution Feature LQN Evolution Feature ... Evolution Feature

TechnicalDifference
BuilderDTMC

TechnicalDifference
Builder...

TechnicalDifference
BuilderLQN

RecognitionRules for
DTMC

RecognitionRules for
LQN

RecognitionRules for
...

Figure 8.2. Important elements for the realization of the evolution feature of CoWolf. Blue boxes
represent java classes, green octagons represent Henshin files and yellow/orange rounded boxes
represent plug-ins.

Ź The model-specific EvolutionManager inherits from the AbstractEvolutionManager and
specifies if the evolution feature for this model should be enabled. Here, the matcher
that should be used to calculate the correspondences for this model is specified, too.

Ź The also model-specific TechnicalDifferenceBuilder: SiDiff needs this class in order to
build the low-level difference. Here the desired model must be specified. Furthermore,
model elements can be defined here that should be filtered and thus aren’t part of the
resulting low-level difference.

Ź The SiLift-RuleBaseProject contains all the recognition rules for the specific model.
They enable the possibility of SiLift to detect user edit operations. The recognition rules
are Henshin rules (see chap. 5.1.4) and are automatically generated from SiLift if the
associated edit rules are located in the same plug-in.

83

8. Architecture

8.4 Co-Evolution
Author: Michael Müller

The Co-Evolution component (see img. 8.1) of Co Wolf provides all the logic related to
transformations between different model types. As already explained for the model and
evolution components, each transformation resides in a separate Eclipse plugin.

8.4.1 Abstraction Layer

The abstraction layer of the Co-Evolution component contains the interface to Henshin
(see chap. 5.1.4), which is used to execute transformation rules, as well as the common
logic needed to perform the transformation of models. The main class that handles both
mentioned items is the AbstractTransformationManager which has to be extended by
transformation plugins.

AbstractTransformationManager

The AbstractTransformationManager provides the main transformation framework used in
Co Wolf . Before the transformation is invoked, the AbstractTransformationManager performs
the following tasks:

Ź Loading of correct versions of models by using the version management of Co Wolf (see
chap. 9.2)

Ź Performing evolution on source models by using the Evolution component of Co Wolf
(see chap. 8.3)

Ź Loading of extensions which registered at its defined extension points (cf. 12.3.2, 12.3.2)

After successfully completing these tasks, the real transformation starts, where the
developer can basically choose between two transformation strategies:

Ź Difference based transformation (see chap. 12.3.2)

Ź Mapping transformation (see chap. 12.3.2)

The AbstractTransformationManager executes the transformation based on the strategy
chosen and returns the new result model instance.

8.4.2 Implementation of a Co-Evolution

Essentially it is necessary to create a TransformationManager which inherits from the
AbstractTransformationManager and specifies, which two model classes this transformation
can be handled. This process is described in detail in Section 12.3.1.

In general it is sufficient to extend the AbstractTransformationManager, implement the
abstract methods and provide Henshin rules for the difference based transformation or
provide Henshin rules plus a mapping for the mapping based transformation.

84

8.5. Graphical Interface

8.5 Graphical Interface
Author: Verena Käfer

Co Wolf includes two possible user interfaces for every model. The standard EMF tree view
and an individually created drag-and-drop view created with Sirius [Sir].

8.5.1 Tree View

Each tree view has its own plugin. This plugin can be easily created from an existing
generator model. Therefore each plug-in has the same elements:

Ź An action bar contributor

Ź An editor to change modelled elements

Ź A singleton editor plugin class as activator

Ź A wizard to create new models

All four classes are connected in the plugin.xml, either in extension points or as activator.

8.5.2 Sirius

The architecture of a Sirius editor plugin is even simpler. The main part is an .odesign file
which includes every information needed to create and open a graphical representation of a
model. Additionally there may be service classes which include more complex algorithms
to create or edit diagram elements. At last there is also an activator class.

The .odesign File

This file is the most complex part of a Sirius-based editor. It includes mostly two parts:

Ź The mappings which map a diagram element to a model element under given conditions.
This is only the representation, that describes which existing model element will be
represented graphically in what way.

Ź The create and edit functions. This part describes the conditions for creating new
elements or editing existing ones and what must be done in the underlying model.

All parts are combined in a viewpoint which declares on which model types this
graphical editor can work.

85

Chapter 9

Implementation

In the previous chapters was explained how the theories behind Co Wolf work. How the
models work and how the transformations are done. This chapter describes how Co Wolf
was implemented. The graphical editors, the analysis and the transformations.

9.1 Models

There are two different ways how models can be edited in Co Wolf : In a tree view and in a
graphical editor. How these editors are implemented is shown in the following section.

9.1.1 Textual Editor
Author: Johannes Wolf

For the textual presentation and editing of the models we use the tree view editor of EMF
(see Section 5.1). With EMF you can create the code for the tree view editor automatically
by defining a generator model. The generator model can also be created automatically by
using the EMF wizard. After creating the generator model, the developer can customize
the allowed user actions. It is for example possible to enable or disable the opportunity
to create a child of a particular element. After that, the code creation of the textual editor
can be started. Figure 9.1 shows the EMF tree view editor for the DTMC model. On the
left side you can see the model instance as a tree and edit the model by using the context
menu. On the right side is the properties view, where you can edit the properties of the
selected element.

9.1.2 Graphical Editor
Author: Johannes Wolf and Verena Käfer

As described in Section 8.5.2 Sirius uses an .odesign file to define the graphical editor for
the meta models. In this section we will look more in detail how the graphical mapping
and editing of the models are defined.

87

9. Implementation

Figure 9.1. User interface of the EMF tree view editor

Figure 9.2. Basic structure of the .odesign file

Graphical Mapping

For each meta model you have to create a viewpoint first. It is possible to provide many
viewpoints for the same meta model which focus on different aspects of the model. In our
case we provide one viewpoint for each meta model which is a node-link diagram that
displays all elements of the metamodel.

The second step is to create a layer that contains the graphical mapping. You can define
many layers, which gives the oppertunity to hide and show different elements of the model.
It is also possible to define filters for this purpose. In Figure 9.2 you can see the basic
structure of the .odesign file.

Sirius provides a set of Diagram Elements which represent the mapping of a meta model
element to its graphical representation. The graphical representation is described by a Style.

88

9.1. Models

You can choose mainly between basic shapes or use your own images for the representation.
Sirirus provides the opportunity to define Conditional Styles to show different graphical
representations for the same Ecore class depending on a condition expression. For example
this is used to show the initial state of the CTMC model with a thicker border than the
normal states. To define the expression it is possible to use OCL, Acceleo or an own
interpreter defined by Sirius. You can also call Java functions instead. The following list
shows the Diagram Elements that we used to map our meta models to a node-link diagram:

Ź Node: A node maps a single Ecore class of the meta model to a graphical element. Nodes
are for example used to map the states of the DTMC model to a circle.

Ź Container: A container also maps an Ecore class to a graphical element but it can
additionally contain other Diagram Elements of any kind. For example a container is used
to display composite states of the Statechart model. The composite state can contain
many states and composite states as well. To support the nesting of many composite
states you have to enable the inheritance of the mappings from the ancestors.

Ź Bordered Node: The bordered node is a node which is clipped to the border of another
node. This node is used in the DTMC model to display labels or in the component
diagram to display ports of a component.

Each of these types can be extended by a label which contains a text like the name or a
dynamic expression. For the edge mapping between the nodes or containers there are two
types:

Ź Relation Based Edge: This type of edge mapping can be used, if an Ecore class refers
another Ecore class. You also have to define a target finder expression to get the semantic
element you want to connect. In simple meta models this expression is a attribute of the
Ecore class.

Ź Element Based Edge: This edge mapping is used, if the connection between two elements
is represented by an Ecore class and not by a single reference. For example this is the
case in the Ecore class Transition of the DTMC meta model. Beside the target finder
expression you also have to define the source finder expression do get the semantic
source element of the edge.

In Figure 9.3 you can see an example of the mapping elements of the Statechart model.

Model Editing

To enable the user to edit elements of the model you have to define one or many tool
sections. This sections group the supported tools in the user view (see Figure 9.4).

The following list shows the user actions which are mainly supported in the graphical
editor:

89

9. Implementation

Figure 9.3. Structure of the .odesign file for the Statechart model

Figure 9.4. User view of the edit palette for the fault tree model editor

90

9.1. Models

Ź Element Creation

Ź Node/Container Creation: For the creation of a node or a container you have to define
the mapping between the creation tool and the diagram element you want to create.
You also have to define the reference name of the parent element. If it is possible to
create an element within different parent elements (like container, node or bordered
node) you have to define a conditional mapping for the reference (see Figure 9.5).

Ź Edge Creation: The edge creation works the same as the node creation. Sirius addition-
ally provides the source and target element as a variable to set the edge mapping.

Ź Element Editing

Beside the element creation the user has the opportunity to edit existing elements.

Ź Delete Element: By default the element deletion is enabled by selecting a graphical
representation and using the context menu or pressing the del key. In more complex
meta models it is necessary to customize the element deletion. One reason could be
that you also have to delete the parent elements which contains the selected element.
This is for example the case in the LQN model. In other cases its necessary to prevent
an element deletion and set the element to delete manually. This is the case if you
select an edge which semantically represents the source node.

Ź Direct Label Edit: The direct label edit enables the user to set the value of a property
by editing the label of the element.

Ź Reconnect Edge: In graphical editors of simple meta models like DTMC, the edge
reconnection is supported. Here it have to be defined how the new source or the new
target can be found by using an expression.

In other cases also user actions like a selection wizard or drag and drop are supported.
To prevent some wired behavior when copying and pasting graphical elements, this
function was disabled in some editors for the user.

Specialities for Sequence Diagrams

Sirius has special elements for Sequence Diagrams. As sequence diagrams are very complex
diagrams, we decided to do our graphical editor based on the UML-Designer tutorial
[Umlb] which already has sequence diagram support. Therefore we also have or meta
model based on the original EMF UML meta model [Umla]. What elements are included
in our meta model can be seen in Section 6.1.3.

Specialities for LQNs

As we use the LQN Solver to analyse LQN models (See Section 9.3.3), we took the meta
model from Palladio [Pal]. Palladio also uses the LQN Solver to analyse their model and
its LQN meta model has the necessary formality.

91

9. Implementation

Figure 9.5. Definition of the element creation in Sirius

Problems

The work with Sirius wasn’t always easy. As much as it is a good possibility to create own
graphical editors, it also has some bugs. During the development some bugs occurred that
were either already known or confirmed by the Sirius development team. Some of the bugs
got a workaround which makes them invisible to the user but some were not that easy to
fix.
The biggest problems occurred with the LQN meta model. As we took the LQN meta
model from Palladio, we did not create it ourselves. After the first problems occured wen
investigated and saw that there are two different possibilities to create Ecore meta models:
The way we used with the EMF model editor and importing a XML schema. Sirius has
problems with the XML schema version of the meta models and we strongly believe that
Palladio used this method to create the model, especially as some problems only occur
with the LQN models.

The one special LQN problem is that the according model instance is not stored in the
XML code of the representation file at all. That means that when the representation file
is created, the file can be opened as the session object holds all needed information. But
when the session is closed, like after a restart of Eclipse, this information is gone and the
editor shows an error. Unfortunately it was not possible to create a workaround for this

92

9.2. Version Management

error.

An other bug we found is that Sirius takes an URL to the according model instance
when a new representation is created. Unfortunately when the file is in a sub-folder, the
whole path is stored in the XML file. That would make sense, if Sirius would not try to
load the file with the given path relative the path of the representation file. That means
that it is not possible to have the representation file in a different folder than the model
instance and also that we needed a workaround. No fix the wrong path in the XML file we
replaced it manually with the file name only.

The third problem we had was the moving and renaming of model instance files. The
idea was basically to reset the connection to the new model instance file. But using the
official way led to the problem, that after a reset the whole user-specific layout was gone, as
Sirius cannot decide if the same elements are available or if a complete new file was used.
Therefore we decided to manually reset the path to the file directly in the XML code. So
far so good, now a new problem occurred. Sirius has a listener on resource changes. When
a file is renamed or moved the representation file gets invalid and instead of changing the
representation file they just delete the reference to the file. Very clever. Now we have a
workaround for two possibilities: When we are faster than the Sirius listener, we reset the
reference to the file and everything is fine. When the Sirius listener is faster, we set the
reference to the changed file, but unfortunately in this case the user-specific layout is lost.

9.2 Version Management
Author: Philipp Niethammer

The co-evolution between models is based on knowledge about changes in the source
model between the last co-evolution and the current Model Version. Therefore, Co Wolf
provides an integrated version system for all supported models that automatically tracks
changes in the models and creates versions on special occasions. Additionally, this system
is also capable to manage associations between different Model Instances. At the moment,
associations are used to mark former transformations between model instances. On these
grounds, the component for this functionality is called ModelAssociationManager. As it is
an integral part of the framework, it is part of the Core plugin.

The Co Wolf version management is not supposed to replace a common VCS like Git,
Subversion, etc., but to meet the special requirements of model evolution and co-evolution.
As a consequence, it is designed to work in parallel to other VCS environments.

9.2.1 Model and Association Management

The ModelAssociationManager is based on an Ecore Model with an Model Instance for each
Eclipse project. For the sake of clarity, we will refer to a ModelAssociationManager model’s

93

9. Implementation

Figure 9.6. ModelAssociationManager Model

instance as manager.

The manager contains information for each instance of supported models in the project.
Beside the project relative path of the model instance and the ID of the model’s root
object, if available, it also contains a modification stamp to easily identify if the file in the
workspace was changed since the last visit, and information about each version of the
instance. A version is identified by the Unix time stamp of its creation and can have an
optional message.

Additionally, the manager holds associations. An association is a directed n:m relation-
ship between Model Versions. They are augmented by the date of creation and can save
Henshin traces that evolved from the transformation they describe. Figure 9.6 shows a
class diagram of the ModelAssociationManager’s model.

The manager data is saved serialized as XML in a hidden file named .modelassociation

in the Eclipse project root. The data is automatically loaded from the file system on demand
and saved immediately after changes in the data to prevent data losses on an Eclipse crash.

To synchronize operations in the Eclipse workspace with the manager, it is monitored.
Thereby we are able to update the manager if a Model Instance is created, moved, renamed
or deleted. Additionally, if a managed file is moved to another project, the information
about the Model Instance and all it’s versions are moved to the target project’s manager.
Unfortunately, as Eclipse isn’t able to detect the copying of a file [UI08], we can’t duplicate
the versions in this case. It is therefore handled in the same way as the creation of a Model
Instance.

94

9.3. Analysis

9.2.2 Model Version Management

As mentioned above, it is not within the scope of this project to provide a complete VCS.
However, we need easy access to Model Versions used in former transformations to identify
the interim changes.

Thus, we decided for a very basic file based system. Therefore, each Eclipse project
contains the hidden folder .modelversions. In this folder for each Model Instance a folder
structure is created, resembling the whole project relative path of the file. As described, a
version is identified by a UNIX timestamp in the manager. This timestamp is now used
as filename of the version file, which simply is the copy of the Model Instance state at
the given time. For example, a version of the Model Instance model/main.dtmc is saved as
.modelversions/model/main.dtmc/3126447571.version. In this way, a version can simply be
read by services provided by the respective Model Plugin.

Versions are automatically created on special occasions if it either might be needed for
later co-evolutions or to backup manual changes prior to automatic modification. In detail,
that comprises:

Ź On creation of the model instance. This saves an empty instance, only containing the ID
of the root object. It is used for the first transformation.

Ź The source model instance prior transformation, if it differs from the latest version. This
version is needed in future for the next co-evolution.

Ź The target model instance prior transformation, if it differs from the latest version, to
backup manual changes.

Ź The target model instance after transformation. After transformation, the Henshin traces
reference on this model. It is therefore needed in future to resolve these references.
Additionally, this version is part of the association between source and target model
instance, formed by the transformation.

All Model Versions are automatically removed with the deletion of the Model Instance.
Further more the user is able to create versions manually at any time. These versions are
marked as “manual” in the manager.

9.3 Analysis

The analysis of the Quality of Service (QoS) models is done in external tools, but the
customization and the result view are created by Co Wolf to support high usability. However,
most external tools use different model languages than defined in this project, so they need
to be transformed into the other format. Furthermore the parameters of the analysis have
to be defined by the user. In the following sections the implementation of the analysis for
DTMCs, CTMCs, LQNs and Fault trees are explained.

95

9. Implementation

9.3.1 Analysis of a DTMC Model
Author: David Steinhart

DTMC models can be analyzed using the PRISM model checker (5.2.1). Co Wolf provides
reliability validation using reachability analysis. For each state and each label in the DTMC,
for example error states, the reachability can be analyzed. This helps the user to decide
whether he should change the software architecture or make a component more robust to
failure.

9.3.2 Analysis of a CTMC Model
Author: David Steinhart

Similar to DTMC models, CTMC models are analyzed using the PRISM model checker
(5.2.1). CTMC models are used for performance and reliability analyses. Reliability can
be validated using the reachability of critical states, for example error states. Performance
can be validated in multiple ways. Co Wolf provides a wizard (see 9.7) which helps to
create default properties, which are "Steady State Probability", "Probabilistic Response",
"Probabilistic Until" and "Probabilistic Existence".

Figure 9.7. CTMC properties wizard

"Steady State Probability" calculates the probability that condition A will eventually become
true. "Probabilistic Response" calculates the probability that condition B will always become
true in a timeframe after condition A was true. "Probabilistic Until" checks if condition

96

9.3. Analysis

A always was true before condition B becomes true. "Probabilistic Existence" checks if a
condition becomes true in a timeframe. As there are many more possibilities to evaluate
CTMC models, additional properties can be created and edited in an Xtext-based text
editor (5.1.2).

9.3.3 Analysis of an LQN Model
Author: Manuel Borja

The analysis of an LQN model is performed by the LQN Solver (see Section 5.2.3) developed
by the University of Carleton. In order to solve an LQN model with LQN Solver, is necessary
to transform the EMF model into a .lqn file. This transformation is made with XTend. A
snippet of the .lqn file’s template is shown in the Figure 9.8.

Figure 9.8. Snippet of the .lqn file’s template

Solver Parameters

It is possible to configure a set of parameters on the activities in order to model the
workload of a system. These parameters are:

Ź Execution demand: The time demand on the CPU or other device

97

9. Implementation

Ź Wait delay or think time: It can be used to model a delay which not involves the
processor.

Ź Mean synchronous requests to another entry.

Ź Mean asynchronous requests to another entry.

Ź Probability of forwarding the request to another entry rather than reply it.

Results

Co Wolf presents the following results associated with every element of the model.

Ź Processor statistics:

Ź Utilization: Amount of processor’s usage

Ź Task statistics:

Ź Throughput: Throughput of the task

Ź Processor’s utilization: Amount of processor utilization by the task

Ź Entry statistics:

Ź Throughput: Throughput of the entry

Ź Processor’s utilization: Amount of processor utilization by the entry

Ź Activity statistics:

Ź Service time: Total time that the activity uses to process a request. The service time
is calculated based on the delays of the following events:

Ź Queuing for the processor
Ź Service at the processor
Ź Queuing for service tasks
Ź Phase one service time at serving tasks

Ź Service time variance: Variance of the service time.

9.3.4 Analysis of a Fault Tree Model
Author: Manuel Borja

The analysis of a Fault Tree model is performed by xFTA (see Section 5.2.2)

98

9.4. Evolution

Probabilistic Calculations

Ź Probability of top event: As its name indicates, it is the probability that the hazard
occurs. Additionally, xFTA calculates the importance factors and their values are shown
by Co Wolf as well. The importance factors indicates how much is the contribution of the
different components to the overall risk.

Ź Minimal cutsets: A cutset is a combination of basic events which, when all of them
occur, the hazard occurs as well. A cutset is minimal if no of it subsets is a cutset. The
contribution of a minimal cutset is the probability of this cutset divided by the sum of
the probabilities of the calculated minimal cutsets.

9.4 Evolution
Author: Michael Zimmermann

Since Co Wolf uses SiDiff, SiLift and SERGe (see Chapter 5.1.5, 5.1.6 as well as 8.3) to
realize the evolution feature, the main part of the implementation here was to integrate
(respectively use, in case of SERGe) these externally developed plug-ins. The above
mentioned tools offer great functionalities to calculate and present differences of model
versions. But as these tools are also still under development the integration wasn’t quite
easy. Therefore, this chapter will give an overview how the final implementation of
the evolution feature looks like as well as of some problems that occurred during the
implementation of it.

9.4.1 EvolutionManager
Author: Michael Zimmermann

Each supported model of Co Wolf has its own model-specific EvolutionManager that inherits
from the AbstractEvolutionManager. Figure 9.9 shows the UML class diagram of the
AbstractEvolutionManager. If not specified in the subclass, per default the EMF-Compare

Matcher is used to find the correspondences between the model versions. By overriding the
method getEvolutionTypeInfo() the matcher can be specified for the individual model plug-
ins. The figure also shows the abstract method getManagedClass() which is implemented
by the subclasses and returns the model class. This method is used in the isManaged()

methods to decide if the evolution feature is supported for the specified model.
Also, most of the SiLift integration is done in the AbstractEvolutionManager. The

getDefaultSetting() method for example creates a LiftingSettings object which is re-
quired from SiLift for the difference calculation. The class diagram also shows the two meth-
ods evolve() and getDiff() that internally call the SiLift liftMeUp(Resource, Resource,

LiftingSettings) method which gets two model versions and the LiftingSettings and
then computes the lifted difference of this two model versions. As you can see, the evolve()

and the getDiff() methods return different objects. This is because SiLift provides two

99

9. Implementation

Figure 9.9. UML class diagram of the AbstractEvolutionManager class.

different liftMeUp() methods: one that returns a SymmetricDifference and a second that re-
turns a Difference object. The SymmetricDifference object just contains the lifted difference
of the two model versions. The Difference object however contains this lifted symmetric
difference as well as an asymmetric difference, which is used for patching purposes (see
chap. 13.4).

9.4.2 TechnicalDifferenceBuilder
Author: Michael Zimmermann

Besides its own EvolutionManager, each supported model of Co Wolf also has its own
TechnicalDifferenceBuilder. Figure 9.10 shows the abstract TechnicalDifferenceBuilder
class. SiDiff needs this class in order to build the low-level difference. For example, the
of the individual subclass supported model must be specified here. Furthermore, with
the getUnconsidered*Types() methods, model elements are defined here that should be
filtered and thus aren’t part of the resulting low-level difference. If no elements should be
filtered, the methods can just return an empty set. In the implementation of our plug-ins
only Henshin elements are filtered, although actually no model instance should contain
such elements. Mainly the filtering of Henshin elements is a leftover, since at the beginning
Henshin traces (see chap. 5.1.4) were stored in the model instances.

100

9.4. Evolution

Figure 9.10. UML class diagram of the TechnicalDifferenceBuilder class (private attributes and
operations are hidden).

9.4.3 SiLift-RuleBaseProject
Author: Michael Zimmermann

The third needed component for a model evolution feature is the SiLift-RuleBaseProject.
Again, this is needed for all models supported by Co Wolf . The SiLift-RuleBaseProject

contains all recognition rules and a rulebase file (for managing the recognition rules) for
the specific model. They are used by SiLift to detect user edit operations. The recognition
rules as well as the rulebase file are automatically generated by SiLift during the workspace
build process.

9.4.4 Problems
Author: Michael Zimmermann

As mentioned in Chapter 3, we used the continuous-delivery technique with a traffic light
that indicates if after a push to the master branch the build process still was successful.
The advantage of this technique among other things is the possibility to detect error-prone
pushes quickly. But from time to time it happened that the build process failed not because
of a bad push to the master but because something in SiDiff or SiLift was changed. As
already mentioned, SiDiff and SiLift are also still under development and thus it’s not
surprising that their API isn’t that stable and now and then some bigger changes are made.
But since both tools don’t provide something like a changelog on their project sites it was
very time consuming to find and fix the problems every time again. Sometimes luckily
just a new method needed to be implemented, but another time new plug-ins for all of
our models were needed and old existing plug-ins became unnecessary. Therefore, to be
independent of SiLift updates, we decided to create an own repository containing a SiLift

101

9. Implementation

version (1.0.0.201409111244) that was known to work well with Co Wolf .
Also in an earlier version of SiLift every time the edit rules were changed, the recognition

rules as well as the rulebase file (containing the recognition rules) needed to be created
manually again. In a later version of SiLift this was automated and thus, saved a lot of
time.

SERGe, the tool to generate the needed atomic edit rules also was changed from time
to time. At the beginning of our implementation phase, SERGe needed its own Eclipse
instance because the dependencies of SERGEe weren’t compatible with the plug-ins needed
of our development Eclipse instance. In a later SERGe version this problem was fixed
and SERGe could be installed on the development Eclipse instance. This helped a lot
because now the model plug-ins for example no longer had to be synchronized on both
Eclipse instances. But with the SERGe update also the scheme of the configuration file was
changed. Thus, all SERGe configuration files of all of our models needed to be adapted
and checked again if the edit rules generated based on them were still working.

But besides external tools, we also created problems ourself. Our models weren’t very
stable from the beginning and needed to be updated occasionally. Thus, every time also the
edit rules and hence the recognition rules as well as the rulebase file needed to be renewed.

9.4.5 SiLift Rulebase Maven Plugin
Author: Rene Trefft

SiLift generates the recognition rules and the rulebase file during the build of the Eclipse
Workspace. As a general rule of thumb is to avoid storing generated files in a repository, a
Maven plug-in was developed which performs the generation during the build of Co Wolf .

The SiLift Rulebase Maven Plug-in provides two goals. The goal register-ecore-model
looks for any Ecore files in a directory model in the root of a project and register them,
more precisely said adds them to the EPackage Registry. The second goal build generates
the recognition rules and builds the rulebase file by using the edit rules in the directory
editrules relative to project root. Note, a project which has not the SiLift rulebase nature
in its project file is skipped. Only recognition rules from valid edit rules (no error in the
Eclipse workspace) will be generated. An invalid edit rule will be skipped and the error
message of the validation printed.

As a requirement for the building is the availability of the appropriate Ecore Model, the
Ecore model (and any dependent models) must be registered first. Thus, we have to ensure
the following build order:

1. Common Base Model project:
de.uni_stuttgart.iste.cowolf.model

2. Project of model for which the rulebase should be built for:
de.uni_stuttgart.iste.cowolf.model.<modelName>

3. Edit rules project which contains the edit rules:
de.uni_stuttgart.iste.cowolf.evolution.<modelName>.editrules

102

9.5. Co-Evolution Framework

The build order is simply given by the order of the projects / modules in the POM of
the parent project de.uni_stuttgart.iste.cowolf.parent. The generated rulebase and the
recognition rules will be stored in the edit rules project.

For the execution of the build goal some SiLift and SiDiff JARs are necessary. Note,
the Maven plug-in is not a plug-in project as the Co Wolf plug-ins, but a standard Java
project, so Tycho (see chap. 3.5.3) isn’t used. Consequently, the standard Maven dependency
management applies which means any dependencies must be declared in the POM and
their location must be a Maven repository (dependencies locally stored in the project is a
not recommended alternative). As the necessary SiLift plug-ins are not available in such
a repository, we stored them in our Nexus Maven repository on the Lismore server. It’s
referenced in the POM of the project.

The Maven plug-in is not added as a module in the parent project, because it is not
directly a part of Co Wolf and in addition changes occurring rarely. Instead, it can be built
separately whenever it’s necessary.

9.5 Co-Evolution Framework

The co-evolution framework is a central component of Co Wolf . It is very prone to errors,
though, as it uses many other components of the system. That includes model plugins for
source and target, the evolution feature of the source model type, the version and association
management system and hence EMF, SiLift and Henshin as external components. All these
are combined to perform a single action, the execution of the co-evolution rules. It is plain
that small faults in these components can simply propagate and manifest at this point.
Then, again, due to the complexity of interactions it is often hard to track and deduce the
problem.

This section provides an overview of selected parts of the co-evolution framework and
problems we encountered in the implementation.

9.5.1 Resources
Author: Philipp Niethammer

The transformation requires a whole lot of information from different sources. This includes
different model instances, traces between models and a change set. Fortunately, all these
sources are defined using EMF and thus can be handled in the same way.

Each source is represented as EMF resource which contains information about the
file system path and provides file system operations. The data is represented as objects
of the base type EObject contained in the resource. These objects do a lot of work in
the background, for example maintaining references withing the resource and to other
resources, or more specific, if a reference is added to one object, the opposite direction is
automatically added to the target object. While this is very handy in normal usage, it leads

103

9. Implementation

Figure 9.11. The wanted structure of a transformation graph.

to a very high coupling between objects and even resources that can lead to problematic
and obscure side-effects.

To at least restrain side-effects to the co-evolution framework, as a first step we create
independent copies of all resources before running any operation (even reading) on them.
Additionally, we replace all file system URLs by pre-defined virtual identifiers to avoid
confusions and separate the copy even stricter. We create an EMF resource set that contains
the independent resources and provides easy access later on. A resource set is said to
resolve references between resources using the registered resources [IBM+08], we are not
really sure of it, as its behavior does not always support this.

The resource set contains the following resources by their virtual identifier. In source
code, we are using constant URL fields or methods to access them.

Ź transform:old: The old source model version.

Ź transform:source: The current source model version.

Ź transform:target: The target model instance.

Ź transform:oldtraces: The traces leading from the old source model to the target model.

Ź transform:traces: The traces leading from the current source model to the target model
and the resulting traces.

Ź transform:diff: The SiLift differences.

Ź transform:result: The resulting target model.

9.5.2 Transformation Graph
Author: Philipp Niethammer

Instead of resources or resource sets, Henshin is working on an EGraph object. The graph
consists of nodes holding EObjects and edges describing a reference between two objects.

In theory and according to documentation, it should be trivial to add all resources
to this graph, since it resolves dependent resources when a resource is added (using the
resource set). Simply adding each resource should do the business and result in a graph

104

9.5. Co-Evolution Framework

Figure 9.12. The graph structure after adding all resources.

as drafted in Figure 9.11. In practice, however, this led to duplicates of some resources in
special occasions. For example, the differences referenced to another copy of the source
model instance than the traces and old and current traces referenced to their own target
model instance, as in Figure 9.12

We found that this can be solved by only adding specific resources in a specific order
to the graph. Thus, we created the method generateGraph to generate the graph using the
following rules:

1. Add transform:diff set to the graph.

2. If there are no traces in transform:traces, add transform:source to the graph. Else, add
transform:traces.

3. If and only if there are traces in transform:tracesOld, add it to the graph. Else, do
nothing (in contrast to transform:traces!).

4. If and only if both trace resources are empty, add transform:target to the graph.

The idea behind this is to build the graph only using resources that are not already
referenced by other resources in the graph. If there is any trace, we conclude that the target
model instance is already part of the graph, thus we won’t add it again. We can’t explain,
however, why for example the source resources are not added twice in this way, because
they are referenced by both, the differences and the traces.

9.5.3 Traces
Author: Philipp Niethammer

Henshin traces are a very important component of the transformation framework. They
define correlations between source and target model and are therefore essential for the
co-evolution process. A trace is a n:m relationship between different EObjects and has an
optional name attribute. Additionally, traces can contain subtraces and form a hierarchical
structure in this way. Although, subtraces are not supported by Co Wolf at the moment as
explained below.

105

9. Implementation

Usually, the traces are saved in the target resource. But as traces are not directed, e.g., the
State Chart - DTMC transformation (Section 7.1) uses the same traces as the DTMC - State
Chart transformation, we decided to save them separately from the model instances to have
easy access from either side and to keep the model instances small as well. Additionally,
we need to keep the traces of every former co-evolution which would make the storage
in a model resource even more complex. To avoid problems with file system actions like
renaming model instances, we also decided to keep the references purely virtual. That
means, they are always referencing to transform:source and transform:target respectively.

As we always work with virtual references, they should be easily resolved to the
corresponding resources when added to the resource set. Unfortunately, we encountered
several problems: First, we needed traces resolved against both, the old and the current
source model version. Second, we had some strange behavior with resolving the sources to
even one of both. We were able to resolve traces and sources and print out the relations
between them but once added to the graph, they didn’t seemed to be resolved at all. Third,
even more obscure was a behavior we observed on the target side in special occasions:
Being correctly resolved in the resource set, even with both sets of traces linking to the
same target objects, after adding it to the graph the linked object were not the same as
before. In fact, they were an earlier version of the target model instance. We do not have
any clue where this version came from in the situation.

To solve these problems, we wrote a special method resolveTraceSource that reads each
incoming trace, looks up the virtual URLs of all referenced objects in the resource set and
creates a new trace that references to these objects. This solved the problems listed above
and worked fine for all tests we performed. However, as the reasons for the described
misbehavior are absolutely unclear to us, we can under no circumstances guarantee that
there is no scenario in which this is not working correctly. Additionally, the method only
processes direct traces in the list and doesn’t copy any subtraces. We don’t use subtraces
up to now and thus saw no need in investing time into it in respect to the complexity of
this topic. It should though be possible to add support for subtraces by calling the method
recursively.

9.5.4 Rule Mapping
Author: Michael Müller, Rene Trefft

The rule mapping consists of mappings between SiLift specific ChangeSets or Changes of
the SymmetricDifference and the Henshin rules used by the transformation to propagate
the changes onto the model to co-evolve. It is implemented as an XML file which is parsed
and written by Java Architecture for XML Binding (JAXB). A single XML <Mapping> object
contains, besides an integer-valued attribute for the priority of a mapping (the lower the
number, the earlier it will be executed), this possible set of elements and attributes (cf.
Figure 9.1 for an example):

Ź Difference - Name of the change set to map.

106

9.5. Co-Evolution Framework

Ź Rule - Rule to map onto difference, contains sub element Params.
name - Name of the rule.
path - Path to the file in which the rule is contained.

Ź Params - Container for list of Param objects.

Ź Param - Parameter to set before rule execution, contained in super element Params
name - Name of the parameter to set.

Ź Change - Sub element of Param. Contains the Change of the SemanticChangeSet to extract
value of the parameter from.
name - Name of the Change. One of AddReference, RemoveReference, AddObject or RemoveObject
type - Optional. Type of the Change. Specifies the changed reference, needed only if
name is one of AddReference or RemoveReference.

Ź Reference - Sub element of the Change element. This element contains information
about which element to extract value from as most Changes contain one source and one
target object.
name - Name of the Reference. One of src, tgt and obj.
attribute - Attribute to use from the Reference, e. g., id or name.

<Mapping priority="0">

<Difference>CREATE_State_IN_StateMachine_(top)</Difference>

<Rule name="CreatedStateInSC" path="platform:/plugin/[...]/SC_DTMC.henshin">

<Params>

<Param name="id">

<Change name="AddObject">

<Reference name="obj" attribute="id" />

</Change>

</Param>

</Params>

</Rule>

</Mapping>

Listing 9.1. Example rule mapping.

It also exists a form-based Transformation Mapping Editor (see Figure 9.13) for devel-
opment purposes which shows the recognition rules of all registered SiLift rule bases and
the Henshin transformation rules in all projects in the workspace. It can be used to create
a basic instance of a transformation mapping XML file. As it is currently not possible to
specify parameters in the editor, these files in most occasions have to be edited manually
afterwards.

107

9. Implementation

Figure 9.13. Transformation Mapping Editor.

9.5.5 Execution of Henshin-Rules
Author: Rene Trefft, Michael Müller

Henshin rules get loaded by the AbstractTransformationManager before the actual transfor-
mation starts. Based on the chosen strategy, the execution order of these rules depends:

Ź Rule Mapping
In case of the Rule Mapping, each evolution rule found by SiLift while building the
model difference, is mapped to a specific Henshin rule or unit. The order of execution
is specified in the rule mapping, for more details see Section 9.5.4.

Ź Working on SiLift Differences
Units or rules specified by the extension point get executed in an unspecified, random
order, as they are added by the AbstractTransformationManager (see Section 12.3.2).

The rules or units are singularly executed by the Henshin UnitApplication that takes a
Henshin EGraph object, which contains the graph to transform, and a Henshin Engine,
where some execution parameters can be set globally, as parameter. By passing a specific
Monitor to the Engine, the detailed output log level of the rule execution can be specified.
Additionally it is possible to set parameters before every execution of a certain unit/rule.
This happens with the method setParameter on the rule object. The real execution of the
unit/rule happens, when the execute method of the UnitApplication object gets called.

108

9.6. Integration Testing

9.6 Integration Testing
Author: Christian Karl Bernasko

To proof and validate our Co Wolf product we needed to test our product. We used manual
integration tests as well as the automated graphical testing tool SWTBot. SWTBot is
an open-source Java based testing tool for testing Eclipse based applications. SWTBot
provides an API to specify a test case. To verify the functionality SWTBot uses the junit test
framework. SWTBot specifies for common operations its own set of assertions. If we define
a statement with SWTBot, then the SWTBot runner evaluates the statement and throws an
exception if it fails. A statement defined with SWTBot looks like the Listening 9.2 below.
The statement verifies that a view with the name specified by the variable cowolf_view is
present.

Listing 9.2. SWTBOT example

bot.viewByTitle(_cowolf_view).setFocus();

SWTBotView coWolfView = bot.activeView();

assertTrue(_cowolf_view.equals(coWolfView.getTitle()));

SWTBot provides several predefined types which can be used to verify the product.
SWTBot reflects the structure of a Eclipse element as a tree. With the SWTBOTTree object it
is possible to get elements from a tree, we used this for example to navigate through a tree
view of a model or the project structure.

We focused to use the automated integration tests before we made a new release. This
verified that the main functionality of the Co Wolf project was available and functional in
the new release. Since writing an automated integration test need more time then manual
tests, we used also manual tests for more complex operations. For a detailed description of
the integration tests see Chapter 10.

109

Chapter 10

Acceptance Criteria

An important concept of Scrum is the definition of “Done”. It allows to the stakeholders to
assess when the work is complete [SS13]. In order to formalize it, it is neccesary to create,
within every requirement, acceptance criteria, which are artifacts intended to describe, in a
structured way, which are the conditions that the system has to have in order to assert that
the requierement is complete.

This chapter shows the acceptance criteria for the automatic and the manual tests. It
also shows which criteria was tested by what test.

10.1 Format
Author: Manuel Borja

10.1.1 The Gherkin Description Language
Author: Manuel Borja

Introduction

The description language Gherkin [Cuc13] is used in Behavior Driven Development (BDD)
in order to formulate testable requirements. The main advantage of Gherkin is that it
is understandable both for stakeholders and developers. Its structure avoids that the
requirements contain redundant expressions by establishing pre-defined keywords, namely
given that, and, when, then and but.

Formulation and Syntax

The Gherkin’s structure is established through a set of keywords. These are:

Ź Feature: After this keyword a set of properties of a specific functionality will be
described. These properties can be written in a unstructured form. Nevertheless a
user-story-template style can be used.

Ź Background: This keyword allows to describe a specific to-be-done process which is
valid for every scenario. Thus, the background has to be performed before the scenario
is executed.

111

10. Acceptance Criteria

Ź Scenario: Every feature consists of a set of scenarios which are specified following a
common structure. A scenario describes the way the system must work. For that, the
system must be put in a specific context, which is defined with the keyword given that.
How the user has to interact with the system is specified with the keyword when. Finally,
the expected results follow the keyword then.

112

10.2. Basic Actions

10.2 Basic Actions
Author: Christian Karl Bernasko

Acceptance criteria ID: AC4.2.1.1
Requirement ID: 4.2.1
Title: Import CoWolf project
Acceptance criteria:
Given the user has an existing Co Wolf project, which was previously exported
And the user has opened the import dialog
When the user selects the Co Wolf project menu entry
And selects the directory path
And presses finish.
Then the Co Wolf project must be imported into the project workspace
Test Case Operations
File Ñ Import Ñ Existing Projects into Workspace

Acceptance criteria ID: AC4.2.1.2
Requirement ID: 4.2.1
Title: Export CoWolf Project
Acceptance criteria:
Given the user has an existing Co Wolf project in the eclipse workspace
And the user has opened the export dialog
When the user selects the Co Wolf project Menu entry
And selects the project
And presses finish.
Then the Co Wolf project should be imported into the project workspace
Test Case Operations
File Ñ Export Ñ CoWolf Project

Acceptance criteria ID: AC4.2.2.3
Requirement ID: 4.2.2
Title: Switching perspective
Acceptance criteria:
Given the user is on the Java perspective
And selects the Cowolf perspective within the “Open Perspective” dialog.
When he selects the CoWolf perspective and clicks OK.
Then Eclipse changes into the CoWolf perspective.
Test Case Operations
Window Ñ Open Perspective Ñ Select CoWolf perspective Ñ OK

113

10. Acceptance Criteria

10.3 Model Editor
Author: Christian Karl Bernasko

10.3.1 TreeView Editor
Author: Christian Karl Bernasko

Acceptance criteria ID: AC4.3.1.0
Requirement ID: 4.3.1
Title: Edit a model in a textual editor
Acceptance criteria:
Given the user has created on of the following models (Statemachine, Component,
DTMC, CTMC, Faulttree Sequence)
And selects one of these models
When he opens the context menu “Model Name Model Editor”
Then the Treeview editor must be open
And the model must be editable within the Treeview editor.
Test Case Operations
Select model Ñ Select contextmenu Model Name Model Editor

Acceptance criteria ID: AC4.5.1.1
Requirement ID: 4.5.1
Title: Edit a Statemachine model in a Treeview editor
Acceptance criteria:
Given the user has opened the Treeview editor for the Statemachine model
When the user creates a Statemachine with one or more elements (Statemachine, State,
Transition, Composite State, Guard, Event, Transition Action)
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.1.3
Requirement ID: 4.5.1
Title: Edit a Component model in a Treeview editor
Acceptance criteria:
Given the user has opened the Treeview editor for the Component model
When the user creates a Component Model with one or more elements (Hardware
Component, Software Component, Electronic Device, Mechanical Device, Actuator,
Sensor, Connector, Prort Instance, Component Instance, Port type, InPort, OutPort)
Then the user should be able to create a valid model
Test Case Operations

114

10.3. Model Editor

Acceptance criteria ID: AC4.5.1.4
Requirement ID: 4.5.1
Title: Edit a CTMC model in a Treeview editor
Acceptance criteria:
Given the user has opened the Treeview editor for the CTMC model
When the user creates a CTMC Model with one or more elements (State, Transition,
Label)
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.1.5
Requirement ID: 4.5.1
Title: Edit a Faulttree model in a Treeview editor
Acceptance criteria:
Given the user has opened the Treeview editor for the model
When the user creates a Faulttree Model with one or more elements (Hazard, Or,
And, Xor, Prior And, Inhibit, Event Hazard, Event Intermediate Event, Basic Event,
Undeveloped Event, Failure Instance, Failure Type, Error Instance, Error Type)
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.1.6
Requirement ID: 4.5.1
Title: Edit a Sequence model in a Treeview editor
Acceptance criteria:
Given the user has opened the Treeview editor for the Sequence model
When the user creates a Sequence model with one or more elements
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.1.7
Requirement ID: 4.5.1
Title: Edit a LQN model in a Treeview editor
Acceptance criteria:
Given the user has opened the Treeview editor for the LQN model
When the user creates a LQN model with one or more elements (Model type, Core
Type, Processor Type, Slot Type, Run Control Type, Slot Control Type, Solver Params
Type, Slot Type)
Then the user should be able to create a valid model
Test Case Operations

115

10. Acceptance Criteria

10.3.2 Graphical Editor
Author: Christian Karl Bernasko

Acceptance criteria ID: AC4.5.2.0
Requirement ID: 4.5.2
Title: Edit a model in a graphical editor
Acceptance criteria:
Given the user has created one of the following models (Statemachine, Component,
DTMC, CTMC, Faulttree, Sequence)
And selects one of these models
And opens the context menu “Graphical Editor”
When the user creates a new element in the graphical editor
Then the user can edit the the element textually in the properties view
Test Case Operations
Select model Ñ Select contextmenu Model Name Model Editor

Acceptance criteria ID: AC4.5.2.1
Requirement ID: 4.5.2
Title: Edit a Statemachine model in a graphical editor
Acceptance criteria:
Given the user has opened the graphical editor for the Statemachine model
When the user creates a Statemachine with one or more elements (Statemachine, State,
Transition, Composite State, Guard, Event, Transition Action)
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.2.3
Requirement ID: 4.5.2
Title: Edit a Component model in a graphical editor
Acceptance criteria:
Given the user has opened the graphical editor for the Component model
When the user creates a Component model with one or more elements (Hardware
Component, Software Component, Electronic Device, Mechanical Device, Actuator,
Sensor, Connector, Prort Instance, Component Instance, Port type, InPort, OutPort)
Then the user should be able to create a valid model
Test Case Operations

116

10.3. Model Editor

Acceptance criteria ID: AC4.5.2.4
Requirement ID: 4.5.2
Title: Edit a CTMC model in a graphical editor
Acceptance criteria:
Given the user has opened the graphical editor for the CTMC model
When the user creates a CTMC model with one or more elements (State, Transition,
Label)
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.2.5
Requirement ID: 4.5.2
Title: Edit a Faulttree model in a graphical editor
Acceptance criteria:
Given the user has opened the graphical editor for the model
When the user creates a Faulttree model with one or more elements (Hazard, Or,
And, Xor, Prior And, Inhibit, Event Hazard, Event Intermediate Event, Basic Event,
Undeveloped Event, Failure Instance, Failure Type, Error Instance, Error Type)
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.2.6
Requirement ID: 4.5.2
Title: Edit a Sequence model in a graphical editor
Acceptance criteria:
Given the user has opened the graphical editor for the Sequence model
When the user creates a Sequence model with one or more elements
Then the user should be able to create a valid model
Test Case Operations

Acceptance criteria ID: AC4.5.2.7
Requirement ID: 4.5.2
Title: Edit a LQN model in a graphical editor
Acceptance criteria:
Given the user has opened the graphical editor for the LQN model
When the user creates a LQN model with one or more elements (Model type, Core
Type, Processor Type, Slot Type, Run Control Type, Slot Control Type, Solver Params
Type, Slot Type)
Then the user should be able to create a valid model
Test Case Operations

117

10. Acceptance Criteria

10.3.3 (Co-) Evolution
Author: Christian Karl Bernasko

Acceptance criteria ID: AC4.7.1.0
Requirement ID: 4.7.1
Title: Co-evolve context menu
Acceptance criteria:
Given the user has created an initial model (DTMC, CTMC, Faulttree, LQN)
And the user has evolved the model
And the user creates a different model
When the user selects the CoWolf context menu "Co-evolve"
Then the the two models co-evolve.
Test Case Operations

Acceptance criteria ID: AC4.7.1.1
Requirement ID: 4.7.1
Title: Co-evolve Statemachine model to a Dtmc model manually
Acceptance criteria:
Given the user has create a valid Statemachine model
And the user has created a Dtmc model
When the user selects the CoWolf context menu "Co-evolve"
Then the two models co-evolve
Test Case Operations

Acceptance criteria ID: AC4.7.1.2
Requirement ID: 4.7.1
Title: Co-evolve Component model to Faulttree model manually
Acceptance criteria:
Given the user has create a valid Component model
And the user has created a Faulttree model
When the user selects the CoWolf context menu "Co-evolve"
Then the two models co-evolve
Test Case Operations

118

10.3. Model Editor

Acceptance criteria ID: AC4.7.1.3
Requirement ID: 4.7.1
Title: Co-evolve DTMC model to CTMC model manually
Acceptance criteria:
Given the user has create a valid DTMC model
And the user has created a CTMC model
When the user selects the CoWolf context menu "Co-evolve"
Then the two models co-evolve
Test Case Operations

Acceptance criteria ID: AC4.7.1.4
Requirement ID: 4.7.1
Title: Co-evolve CTMC model to Faulttree model manually
Acceptance criteria:
Given the user has create a valid CTMC model
And the user has created a Faulttree model
When the user selects the CoWolf context menu "Co-evolve"
Then the two models co-evolve
Test Case Operations

Acceptance criteria ID: AC4.7.1.5
Requirement ID: 4.7.1
Title: Co-evolve Sequence model to LQN model manually
Acceptance criteria:
Given the user has create a valid Sequence model
And the user has created a LQN model
When the user selects the CoWolf context menu "Co-evolve"
Then the two models co-evolve
Test Case Operations

Acceptance criteria ID: AC4.7.1.6
Requirement ID: 4.7.1
Title: View the difference of two different model types
Acceptance criteria:
Given the user has create a valid model
And the user has created a model of a different type
When the user selects the CoWolf context menu "Version Ñ Show differences"
Then the user can review the difference.
Test Case Operations

119

10. Acceptance Criteria

10.3.4 Analyze
Author: Christian Karl Bernasko

Acceptance criteria ID: AC4.4.0
Requirement ID: 4.4
Title: Analyze context menu
Acceptance criteria:
Given the user has created a valid model of the following types (DTMC, CTMC,
Faulttree, LQN)
When the user selects the CoWolf context menu
And selects the analyze menu
Then the specific Analyze view opens
Test Case Operations

Acceptance criteria ID: AC4.4.1.1
Requirement ID: 4.4.1
Title: Reliability certification of DTMC or CTMC model
Acceptance criteria:
Given the user has created a valid DTMC or CTMC model
When the user selects the CoWolf context menu
And selects at the Analyze view the verification option
And clicks on the finish button
Then the verification of the specific model starts
Test Case Operations

Acceptance criteria ID: AC4.4.2.0
Requirement ID: 4.4.2
Title: Performance certification of LQN models
Acceptance criteria:
Given the user has created a valid LQN model
When the user selects the CoWolf context menu
And selects at the Analyze view the solve LQN option
And clicks on the finish button
Then the performance analyse for the specific LQN model starts
Test Case Operations

120

10.3. Model Editor

Acceptance criteria ID: AC4.4.3.0
Requirement ID: 4.4.3
Title: Safety certification of Faulttree models with calculation of the top event
probability
Acceptance criteria:
Given the user has created a valid Faulttree model
When the user selects the CoWolf context menu
And selects at the Analyze view the "probability of the top event" option
And clicks on the finish button
Then the probability calculation of the top event starts
Test Case Operations

Acceptance criteria ID: AC4.4.3.1
Requirement ID: 4.4.3
Title: Safety certification of Faulttree models with minimal cutset calculation
Acceptance criteria:
Given the user has created a valid Faulttree model
When the user selects the CoWolf context menu
And selects at the Analyze view the "minimal cutset" option
And clicks on the finish button
Then the minimal cutset calculation of the Faulttree model starts
Test Case Operations

121

10. Acceptance Criteria

10.4 Test-Case Description and Execution
Author: Christian Karl Bernasko

In this section we describe the automatic executable test cases that we used to validate the
CoWolf project.

T001 Co-Evolution Test

In this test case we used the a statemachine model with the name 00.statemachine. We
transformed it initially to a DTMC file. In the next step we evolved the statemachine
model to the 01.statemachine model. We Co-Evolved the version 01.statemachine with
the DTMC model. Afterwords we verified that the Co-Evolved model equals a recorded
verified model.

T002 Project Test

This test asserts that all project items of the CoWolf product are available. The project items
are all models, wizards and the creation of the project itself.

T003 Faulttree Analyze Test

This test executes The Faulttree analyzation, it sets the xFTA tool path and asserts that the
external tool returns the result.

T004 Editor Test

This test asserts that for every model the corresponding elements can be created and that it
is possible to create a valid model.

T005 DTMC Analyze Test

This test executes The DTMC analyzation, it sets the Prism tool path and asserts the the
external tool returns the result.

Test Matrix

Testing the product is a critical task. We needed to make sure that all implemented features
are functional before we released a new version of Co Wolf , we used a test matrix (see Table
10.1) to verify the functionality of the product.

122

10.4. Test-Case Description and Execution

Table 10.1. Testcase matrix

ID M
an

ua
l

Te
st

in
g

T0
01

T0
02

T0
03

T0
04

T0
05

Su
cc

es
s

Fa
ile

d

A
cc

ep
ta

nc
e

cr
it

er
ia

ID

AC4.2.1.1 ‚ - ‚ - - - ˝ ˝

AC4.2.1.2 ‚ - ‚ - - - ˝ ˝

AC4.2.1.3 ‚ ‚ - - - - ˝ ˝

AC4.5.1.0 ‚ - - - ‚ - ˝ ˝

AC4.5.1.1 ‚ - - - ‚ - ˝ ˝

AC4.5.1.2 ‚ - - - ‚ - ˝ ˝

AC4.5.1.3 ‚ - - - ‚ - ˝ ˝

AC4.5.1.4 ‚ - - - ‚ - ˝ ˝

AC4.5.1.5 ‚ - - - ‚ - ˝ ˝

AC4.5.1.6 ‚ - - - ‚ - ˝ ˝

AC4.5.1.7 ‚ - - - ‚ - ˝ ˝

AC4.5.2.0 ‚ - - - ‚ - ˝ ˝

AC4.5.2.1 ‚ - - - ‚ - ˝ ˝

AC4.5.2.2 ‚ - - - ‚ - ˝ ˝

AC4.5.2.3 ‚ - - - ‚ - ˝ ˝

AC4.5.2.4 ‚ - - - ‚ - ˝ ˝

AC4.5.2.5 ‚ - - - ‚ - ˝ ˝

AC4.5.2.6 ‚ - - - ‚ - ˝ ˝

AC4.5.2.7 ‚ - - - ‚ - ˝ ˝

AC4.7.1.0 ‚ - - - - - ˝ ˝

AC4.7.1.1 ‚ ‚ - - - - ˝ ˝

AC4.7.1.2 ‚ - - - - - ˝ ˝

AC4.7.1.3 ‚ - - - - - ˝ ˝

AC4.7.1.4 ‚ - - - - - ˝ ˝

AC4.7.1.5 ‚ - - - - - ˝ ˝

AC4.7.1.6 ‚ - - - - - ˝ ˝

AC4.4.0 ‚ - - - - - ˝ ˝

AC4.4.2.0 ‚ - - - - ‚ ˝ ˝

AC4.4.2.1 ‚ - - - - - ˝ ˝

AC4.4.2.2 ‚ - - - - - ˝ ˝

AC4.4.3.0 ‚ - - ‚ - - ˝ ˝

AC4.4.3.1 ‚ - - - - - ˝ ˝

Legend
‚ Test covers criterion
- Test does not cover criterion
˝ Test result

123

Chapter 11

Evaluation
Author: Michael Müller

This chapter contains the evaluation of the co-evolution component of Co Wolf . Therefore it
is compared with a traditional complete transformation of a model in terms of transforma-
tion performance and manual work needed to be done after the transformation completed
to gain a valid model.

11.1 Goals

In this section the evaluation goals are described in Tables 11.1 and 11.2. The evaluation is
done by comparing the incremental transformation between model instances done in the
co-evolution with a full transformation for every instance. The transformation used for
evaluation is limited to the Statechart to DTMC transformation earlier described in this
report.

Table 11.1. Goal 1: Performance of co-evolution

Goal G1 Determine the performance of the incremental transformation
performed by the co-evolution.

Purpose Measurement of the performance to allow comparision with
full transformation.

Issue Performance
Object PPU Case Study State Chart model instances are used.
Viewpoint User

Question Q1.1 How well does the incremental transformation process perform
in comparison to the complete transformation of a model

Q1.2 How much is the transformation process influenced by the size
of the model?

Q1.3 Do Henshin rules impact performance analysis?
Metrics M1 Size of models (Number of nodes and edges) ?

M2 Execution time in ms
M3 Number of Henshin rules exectuted
M4 Avg. execution time of most expensive Henshin rule (in ms)

125

11. Evaluation

Table 11.2. Goal 2: Usability of co-evolution

Goal G2 Determine the effort needed after a full/incremental transfor-
mation to create a valid model instance.

Purpose To use the model created/modified by transformation, in most
cases one has to modify some properties.

Issue Usability
Object PPU Case Study models previously used to determine the

performance of the transformation.
Viewpoint User

Question Q2.1 How many validation errors occur after incremental transfor-
mation in comparision to a full transformation?

Metrics M1 Number of validation errors

11.2 Design

The evaluation is performed as described in this section.

Basic Setup
The basic setup used for the evaluation is given as follows:

Ź Usage of “Pick and Place Unit” Case Study State Chart model instances. [LFVH13]
This model instances are an example for factory automation systems and are an interest-
ing case for model evolution. For a detailed explanation, see [LFVH13].

Ź Addition of first model instance which is completely empty.
There was a first model instance added to the series of model instances. This was done
to be able to build traces which are in later steps of the co-evolution needed to perform
correctly.

Unit test setup
To measure performance/usability of the transformation on this models, the evaluation is
executed as two seperate unit tests:

1. Perform full transformation on each model instance
For each model instance of the “PPU Case Study” the difference to an empty model
is built. Based on this difference, the full transformation to the DTMC model is
performed. The evolution step is done with the result that the transformation rules from
Co Wolf , which are based on the difference, still work. To account for the fact that a full
transformation transforms the whole model and does not need the difference, the time
interval SiLift takes to build the difference is not included in the measured execution
time.

2. Perform co-evolution for each model instance iteratively
Like for the full transformation, first the difference is built. To perform an incremental

126

11.3. Threats to Validity

transformation now, the difference is essential for the transformation process. Therefore
the time SiLift takes to build the difference is part of the whole transformation execution
time. Additionally the difference is each time built based on the previous transformation
result, while for the full transformation the difference to an empty model is built.

Hardware Setup
The tests were executed on a laptop equipped with

Ź Intel Core-i5-460M processer (2 x 2.53 GHz)

Ź 4 GB RAM

Ź 256 GB SSD

Ź no other processes actively running

Ź Kubuntu 14.04, 64-bit version

11.3 Threats to Validity

In this section some threats to the validity of the results presented in the next section are
taken into account.

Ź SiLift execution times vary much
The results of the co-evolution are influenced by the evolution performed by SiLift. As
one can see in the results section, times of evolution execution varies between different
instances vary much. Multiple runs however showed that the evolution execution time
for each model instance is roughly the same.

Ź Henshin rules impact performance of co-evolution
As one can see in the results section (see Section 11.4), some rules take much more
time to be executed than others. While the full transformation only consists of cre-
ate/delete Henshin rules, which in fact are executed rather fast, the co-evolution also
uses some rules which are changing references to objects and get executed rather slowly
in comparison. This could be a potential point of improvement for the co-evolution.

11.4 Results

11.4.1 Results for Goal 1

In Table 11.3 and Figues 11.1 and 11.2 one can see the measured values for the evaluation.
Please note that the column “Evolution” shows the time needed by the incremental co-
evolution to build the difference. It is already included in the total execution time of the
incremental transformation used by co-evolution.

127

11. Evaluation

Table 11.3. Measurements for the performance of the transformation process (M1/M2/M3)

Measured execution times Executed Rule Count
Step Complete Incremental Evolution Complete Incremental

1 8,258 s 11,330 s 5,713 s 388 388
2 7,341 s 0 s 0 s 388 0
3 6,680 s 9,424 s 2,987 s 386 16
4 12,052 s 21,638 s 5,892 s 540 326
5 16,323 s 22,138 s 7,138 s 626 292
6 14,986 s 9,597 s 1,102 s 594 58
7 17,444 s 7,242 s 0,949 s 604 46
8 20,980 s 7,300 s 1,041 s 646 72
9 33,576 s 46,299 s 2,129 s 710 148

10 38,825 s 9,589 s 1,455 s 736 40
11 46,052 s 11,200 s 1,628 s 770 118
12 53,897 s 16,244 s 1,784 s 836 104

Figure 11.1. Time needed for execution in each transformation step.

As a result it is clearly visible that the incremental process of co-evolution outperforms
the full transformation of a single model, as soon as there are relatively little changes in
comparison to the model size. In cases where the model is rather small a full transformation
can be faster than the incremental co-evolution because in the case of a full transformation
no difference has to be built before performing the transformation.
Also notable in Figure 11.1 is the outlier in step 9 for the incremental transformation.

128

11.4. Results

Figure 11.2. Number of rules executed in each transformation step.

While there are in relation to other steps many rules executed, the execution time is still
abnormally high. Therefore the evaluation also determines which rule took the longest
time to be executed and how often it was executed in total.

Table 11.4. Most costly Henshin rule with total execution time and number of executions

Complete Incremental
1 CreatedTransitionInSC 2,250 s 44 CreatedTransitionInSC 2,412s 44
2 CreatedTransitionInSC 1,446 s 44 - 0 s 0
3 CreatedTransitionInSC 1,690 s 44 ChangedTransitionSource 0,316 s 1
4 CreatedTransitionInSC 5,324 s 62 CreatedActionInSC 4,657 s 22
5 CreatedTransitionInSC 7,602 s 67 CreatedActionInSC 6,909 s 18
6 CreatedTransitionInSC 7,065 s 67 ChangedTransitionTarget 1,493 s 2
7 CreatedTransitionInSC 8,737 s 70 CreatedActionInSC 0,834 s 2
8 CreatedTransitionInSC 11,203 s 77 CreatedActionInSC 1,411 s 3
9 CreatedTransitionInSC 20,626 s 90 ChangedTransitionTarget 20,438 s 15
10 CreatedTransitionInSC 23,401 s 90 CreatedActionInSC 3,849 s 5
11 CreatedTransitionInSC 30,431 s 101 ChangedTransitionTarget 1,822 s 12
12 CreatedTransitionInSC 30,463 s 101 CreatedActionInSC 10,355 s 11

As one can see in the Table 11.4, the most time consuming rule CreatedTransitionInSC
for the full transformation process always stays the same, while the total time executing
it increases relative to the number of its invocations. In contrast to this, the rule which is

129

11. Evaluation

most time consuming varies for the incremental transformation from step to step. Here
often change operations where references are changed occur, which are not utilized by
the full transformation of a model. Especially in the already mentioned step 9 the rule
ChangedTransitionTarget is unusally often called and nearly reaches the execution time of
the most time consuming rule for the full transformation. This also explains the outlier in
the measurement of the complete transformation process.

11.4.2 Results for Goal 2

Table 11.5. Measurements for the manual amount of work needed after transformation

Number of manual chanes needed
Step Complete Incremental

1 65 65
2 65 0
3 64 1
4 93 41
5 103 30
6 100 4
7 103 5
8 111 10
9 125 16

10 129 5
11 141 14
12 148 11

The results in Table 11.5 and Figure 11.3 clearly state a big advantage for the incremental
transformation in the co-evolution process over a full transformation in each step: The
number of needed manual adjustments is limited in terms of the co-evolution (for Statechart
to DTMC) to cases where a change (create, delete, move) to a transition occured, while
changes made to previous model versions are preserved. In contrast to the incremental
process, where probabilities are preserved, the user has to enter probabilities for each
transition after a full transformation every time.

11.5 Conclusion

11.5.1 Conclusion for Goal 1

As the computation of the evolution step done by SiLift can be rather time-consuming, for
small models it may be practical to use a full transformation of the model, if there’s not
much manual work to do after the transformation is finished. However, the bigger the

130

11.5. Conclusion

Figure 11.3. Manual adjustments needed after each transformation step

model is, the better the co-evolution scales in comparison with a full transformation of a
model instance: While the execution time for the full transformation grows with the model
size, the co-evolution execution time grows in general with the number of changes to the
original model. The size of the model has only small impact on the execution time for the
incremental transformation.

11.5.2 Conclusion for Goal 2

In addition, the incremental co-evolution process preserves manual changes to the target
model of the co-evolution, e.g. transition probabilities in a DTMC do not get overwritten
by a co-evolution from a state chart model instance. In comparison to a full transformation
from a model instance this can save a huge amount of work. While the number of changes
of an incremental co-evolution step is in general much lower in comparison with a full
transformation executed on the same model, the execution time of a single Henshin rule
while performing this step can be much higher. This is the case e. g. when edges change
their source or target node.

131

Chapter 12

Developer Guide

In the previous chapters was described how Co Wolf is build internally. This chapter now
describes how to extend it. It is possible to write your own plug-ins for individual models
of your choice. Each model needs plug-ins for its meta model, some for the evaluation and
some for the transformation. How to do this is explained in the following sections.

12.1 Develop a New Model
Author: Jonas Scheurich

Co Wolf can be adapted with further model types and self-developed metamodels. This
section describes how to create a own metamodels suitable for Co Wolf .

12.1.1 Create Projects

First, some project has to be created. The conventions for the plug-in’s IDs are listed as
follows:

Ź [companyID].[modelname] This plugin project contains the model manager and the
generated Java code for the metamodel.

Ź [companyID].[modelname].tests This fragment project contains the unit tests.

Ź [companyID].[modelname].feature This feature project bundles all necessary plugins for
your model. A feature requirement for supplying it with Co Wolf .

The following projects will be generated later:

Ź [companyID].[modelname].emf.edit This project contains the generated edit operations.

Ź [companyID].[modelname].emf.editor This project contains the generated EMF tree view
editor.

For your own editors:

Ź [companyID].[modelname].[editortype].editor

133

12. Developer Guide

Figure 12.1. Ecore classes are inherit from IDBase in the CommonBase meta model to create identifier.

12.1.2 Create Ecore Model

Now create your metamodel in a "model" folder (convention) in the [companyID].[modelname]
project. Add the meta model file to the build properties. Further information about meta
model development can found on the EMF project page [Emf]. Ensure that your meta
model contains a root class and be aware, that every class must be contained in a another
class (except the root class).

To perform the evolution all ecore classes need an identifier. Import the CommonBase
ecore metamodel into your metamodel and make the ecore classes inherit from IDBase and
the IDs will be generated automatically for every object instance (see Figure 12.1).

12.1.3 Create Genmodel and Generate Editor

Now create a genmodel file in the "model" folder. This file contains all properties for the
generation of the Java code. Import your metamodel (see Figure 12.2). create a

If you use in your ecore metamodel a third party ecore metamodels refer their genmodel
(see second table in Figure 12.2).

Now configure the genmodel. In the following list we describe some configurations.
For more details see the Co Wolf project wiki.

Properties of the Meta Model in the Genmodel

Ź BasePackage: Change to conventions described in 12.1.1.

Ź File Extensions: Set your file extension.

Ź Package Suffixes: Change to conventions described in 12.1.1.

134

12.1. Develop a New Model

Figure 12.2. Import of a ecore metamodel into an genmodel.

Ź Generate Example Class: If you don’t want the example classes set this property to
false;

Properties of the Genmodel

Ź IDs and class names: Change the class names like the conventions described in 12.1.1.

Now generate the Java code for model, edit and editor. You find the options in the
context menu of the root element in the genmodel. If your metamodel inherit from many
ecore classes be aware, that the Java implementation inherits from the first class in the
inherit list and the other classes are only implemented by their interfaces, so constructors
of the second inherited ecore class and so on are not called automatic.

135

12. Developer Guide

12.1.4 Change the Wizard

EMF generates beside the editor an Eclipse wizard for the createn of a new model instance.
In the root elements dropdown are all classes available. You have to be sure that only your
root element can be selected. Change the following method int the [modelname]ModelWizard

class like the following example:

Listing 12.1. Code to remove in the model wizard

@Override

protected Collection<String> getInitialObjectNames() {

if (initialObjectNames == null) {

initialObjectNames = new ArrayList<String>();

for (EClassifier eClassifier : dtmcPackage.getEClassifiers()) {

if (eClassifier instanceof EClass) {

EClass eClass = (EClass)eClassifier;

if (!eClass.isAbstract() && eClass.getName().

equalsIgnoreCase("[TODO Change This to root-node]")) {

initialObjectNames.add(eClass.getName());

}

}

}

Collections.sort(initialObjectNames, CommonPlugin.INSTANCE.getComparator());

}

return initialObjectNames;

}

Ensure that the generated annotation is change to generated NOT to prevent your changes
when the Java code is regenerated.

12.1.5 Implement AbstractModelManager

To connect you model with Co Wolf , implement the AbstractModelManager in the [compa-
nyID].[modelname] project. The abstract methods to be overwritten are listed as follows:

Ź getManagedClass(): The class type of your root element. e.g. CTMC.class;

Ź getModelName(): The display name of your model.

Ź getModelNamespace(): The namespace of your model. It can be access this with the
eNS_URI attribute of the metamodel package class.

Ź getFileExtension(): The file extension, as defined in the genmodel.

136

12.2. Develop a New Evolution

Figure 12.3. Create a ModelManagerExtension to provide your AbstractModelManager implementation.

Create the Extension Point

The model manager will be provided to Co Wolf by an extension point. Create an Model-
ManagerExtension to provide your AbstractModelManager implementation (see Figure 12.3).

12.1.6 Add a Graphical Editor
Author: Verena Käfer

A graphical editor for a model is a nice to have but no must have. If you want to create a
graphical editor for your model you need a new plugin project for it. As described in 9.1.2
a graphical editor is defined in an odesign file. That section also describes how an odesign

file is built. What you now want to do is to add the creation of the aird file to your model
creation wizard. For this, please have a look at the model creation wizards in the editor
plugins of the other models. Here you can easily see how the connection can be done.

If your root element for the viewpoint is not the top element in your model, then (and
only then) you need to override the getRootObject() method in your model manager. This
can be seen in the model manager of the Sequence Diagrams.

12.2 Develop a New Evolution
Author: Michael Zimmermann

This chapter will explain how to extend the evolution feature of Co Wolf to be able to show
the evolution of another model. As already mentioned in Chapter 8.3, Co Wolf makes use
of SiDiff and SiLift to realize the evolution feature. Hence, most of the requirements to
develop the evolution feature for a new model are SiDiff- and SiLift-specific. Anyway, all
necessary SiDiff/SiLift as well as the Co Wolf -specific steps will be explained here.

137

12. Developer Guide

Figure 12.4. MANIFEST.MF Ñ Dependencies for EvolutionManager.

Important: This guide is based on SiLift version 0.1.0.201409111244. In another version
of SiLift the required steps could be different as shown here.

1 Creation of the Evolution Manager

Every model needs its own EvolutionManager. The manager is needed to enable the
evolution feature for the specific model. In addition, the matcher that should be used to
calculate the correspondences for this model is specified here. The choice of the matcher
depends on the model. If, for example, the model elements have UUID attributes, the
ID-based matcher should be used (see chap. 5.1.5). Before creating the EvolutionManager,
a new Plug-in Project has to be created first. For this, go to FileÑ NewÑ Other... Ñ

Plug-in Development and create a Plug-in Project. Then, open the MANIFEST.MF, go to
Dependencies and add the dependencies shown in Figure 12.4.

Important: This example is taken from the CTMC model. Instead of
de.uni_stuttgart.iste.cowolf.model.ctmc the desired model plug-in must be added.

After that, the EvolutionManager must be implemented. Listing 12.2 shows the imple-
mentation of the EvolutionManager for the CTMC model example. Important lines are
commented.

Afterwards this plug-in needs to be defined as a Co Wolf extension. Therefore, open the
MANIFEST.MF again and go to Extensions. Click on Add... and select the
de.uni_stuttgart.iste.cowolf.evolution.evolutionManagerExtension extension point there.
Click on Finish to add it. Afterwards right click on it, go to New and click on evolutionManager.
Now, on the right side under Extension Element Details, you have to define your pre-
viously implemented EvolutionManager class. This result should look similar like the

138

12.2. Develop a New Evolution

public class CTMCEvolutionManager extends AbstractEvolutionManager {

@Override

public boolean isManaged(Resource model) {

if (model == null || model.getContents() == null

|| model.getContents().isEmpty()) {

return false;

}

return model.getContents().get(0) instanceof CTMC; // Your

model

}

@Override

public EvolutionTypeInfo getEvolutionTypeInfo() {

EvolutionTypeInfo info = new EvolutionTypeInfo();

// Specify matcher you want to use

info.setMatcher(EvolutionTypeInfo.MATCHER_EMFCOMPARE);

return info;

}

@Override

protected Class<? extends EObject> getManagedClass() {

//Specify main model class

return CTMC.class;

}

Listing 12.2. Example EvolutionManager implementation for CTMC.

example in Figure 12.5.

2 Creation of the Technical Difference Builder

The next step is to implement the TechnicalDifferenceBuilder for this model. This class
is needed in order to build the low-level difference. Furthermore, model elements,
which should be filtered so they are not part of the resulting low-level difference, can
be defined here. Like described in the previous step, first create a new Plug-in Project,
go to MANIFEST.MF Ñ Dependencies and add the dependencies shown in Figure 12.6.
Again, instead of de.uni_stuttgart.iste.cowolf.model.ctmc your desired model must
be added.

Next, the TechnicalDifferenceBuilder must be implemented. Listing 12.3 shows an
example implementation of the TechnicalDifferenceBuilder for the CTMC model.

In order SiLift can use the TechnicalDifferenceBuilder, this plug-in needs to be regis-
tered as an extension. This time add the extension point

139

12. Developer Guide

Figure 12.5. MANIFEST.MF Ñ Extension for EvolutionManager.

Figure 12.6. MANIFEST.MF Ñ Dependencies for TechnicalDifferenceBuilder.

org.sidiff.difference.technical.technical_difference_builder_extension. Afterwards
right click on it, go to New and click on technical. Now again on the right side under
Extension Element Details insert your previously implemented TechnicalDifferenceBuilder

class.

3 Creation of the RuleBase Plugin-Project

This SiLift plug-in contains all recognition rules for the specific model. They enable the
possibility of SiLift to detect user edit operations. The recognition rules are Henshin
rules (see chap. 5.1.4) and are automatically generated from SiLift if the associated edit
rules are located in the same plug-in.

Go to FileÑ NewÑ Other... Ñ SiLift and click on RuleBase Plugin-Project. Specify

140

12.2. Develop a New Evolution

public class TechnicalDifferenceBuilderCTMC extends TechnicalDifferenceBuilder {

@Override

protected Set<EClass> getUnconsideredNodeTypes() {

//NodeTypes can be filtered here

return null;

}

@Override

protected Set<EReference> getUnconsideredEdgeTypes() {

//EdgeTypes can be filtered here

return null;

}

@Override

protected Set<EAttribute> getUnconsideredAttributeTypes() {

//AttributeTypes can be filtered here

return null;

}

@Override

protected String getObjectName(EObject obj) {

return obj.toString();

}

@Override

public String getDocumentType() {

return CtmcPackage.eNS_URI; // Adapt this to your model

}

@Override

public String getName() {

return "CTMC Technical Difference Builder";

}

}

Listing 12.3. Example TechnicalDifferenceBuilder implementation.

the name and other settings and click on Next until you come to the Templates selection.
Here, choose RuleBase Plugin-Project and click on Finish. This time the required
dependencies and the extension should be added to the MANIFEST.MF automatically.

Now, you can place your edit rules for your model into the editrules folder of the

141

12. Developer Guide

created RuleBase Plugin-Project. Atomic edit rules can be generated using the SiDiff
Edit Rule Generator (SERGe) [Rin14]. To do this, you need a SERGe configuration file
for your model. It’s a XML file with the extension serge specifying parameters for the
generation. Listing 12.4 shows the configuration file used for the CTMC model. To
generate the edit rules right click on the configuration file go to SERGe and click on
Generate CPEOs. This will open the wizard to generated the edit rules.

Important: In order to generate the edit rules with SERGe your model needs to be
installed in your Eclipse instance.

As already mentioned, SERGe can only generate atomic edit rules. Needing some
complex ones you have to create them manually. If you want to do this, you have to pay
attention to some points:

Ź The file containing an edit rule has to end with _execute.henshin.

Ź Every edit rule must be located in a separate file.

Ź Every edit rule needs a mainUnit.

Now, that the edit rules are located in the RuleBase Plugin-Project only the recognition
rules are still missing. SiLift generates them as well as the rulebase file during the build
process. To trigger the generation manually go on Project and click Clean... (Build
Automatically should be enabled). After the workspace was built, the recognition rules
should be located in the recognitionrules folder and additionally a rulebase file should
be located in the root of the plug-in. The rulebase file can be opened with the Rulebase

Editor to manage the recognition rules (e. g., disable or enable them).

142

12.2. Develop a New Evolution

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Config SYSTEM "http://pi.informatik.uni-siegen.de/SiDiff/

Editrulesgeneratorconfig.dtd" >

<Config>

<GeneralSettings>

<preventInconsistency value="true" />

<multiplicityPreconditions integrated="true" separately="false" />

<reduceToSuperType ADD_REMOVE="true" CHANGE_LITERAL="true"

CHANGE_REFERENCE="true" CREATE_DELETE="true" MOVE="true"

MOVE_DOWN="true" MOVE_UP="true" SET_UNSET_ATTRIBUTE="true"

SET_UNSET_REFERENCE="true" />

<disableVariantsWithSupertypeReplacement value="false" />

<modelUsesProfileMechanism value="false" />

<createAllAttributes value="true" />

</GeneralSettings>

<MetaModelSettings>

<!-- Specify your model nsURI here-->

<MainModel nsUri="http://ctmc/1.0" />

<MaskedClassifiers/>

</MetaModelSettings>

<Transformations>

<Creates allow="true" />

<Deletes allow="true" />

<Moves allow="true" allowReferenceSwitching="true"

allowReferenceCombinations="true" />

<MoveUps allow="true"/>

<MoveDowns allow="true"/>

<SetAttributes allow="true" />

<UnsetAttributes allow="true" />

<SetReferences allow="true" />

<UnsetReferences allow="true" />

<Adds allow="true" />

<Removes allow="true" />

<ChangeLiterals allow="true" allowLiteralSwitching="true" />

<ChangeReferences allow="true" />

</Transformations>

<!-- Specify your model root element-->

<Root name="CTMC" nested="false"/>

<WhiteList>

<!-- You can whitelist elements here-->

</WhiteList>

<BlackList>

<!-- You can blacklist elements here-->

</BlackList>

</Config>

Listing 12.4. Example SERGe configuration file.
143

12. Developer Guide

12.3 Develop a new Co-Evolution
Author: Philipp Niethammer

The main functionality of Co Wolf is the transformation between different model types. The
continuous transformation between associated models to follow up changes in one model
is then called co-evolution.

As these transformations are very specific depending on source and target models, each
transformation must be build on its own. Co Wolf provides two easy-to-use methods to
define transformations. Additionally, the developer may define a custom method, e.g., to
integrate an existing transformation that for instance is not using Henshin at all.

This section describes the transformation framework of Co Wolf in general, the usage of
the two implemented methods and how to create custom transformation methods.

12.3.1 Transformation Framework

Each transformation is created as a Eclipse feature that may contain one or multiple Eclipse
plugins. A transformation feature can provide the transformation between two model
types either one- or bidirectional. But at the moment, in a user’s installation there must
only be one method for each (directed) transformation.

Preconditions and Conventions

To run a transformation, the following preconditions must be met:

Ź There must be a Model Plugin implemented and installed for both models

Ź For each possible source model, there must be an evolution plugin implemented.

Ź Each transformation feature must implement the AbstractTransformationManager and
implement at least the following 4 abstract methods:

Ź getManagedClass1 - returns the model root class of one side of the transformation.

Ź getManagedClass2 - returns the model root class of the second side of the transforma-
tion.

Ź getKey - returns a (installation unique) string that identifies the transformation from
getManagedClass1 to getManagedClass2.

Ź getReverseKey - A (installation unique) string that identifies the transformation from
getManagedClass2 to getManagedClass1.

Ź If the transformation is unidirectional, the manager must also override the method
isManaged(Class<?> source, Class<?> target) so that it returns true if and only if
source and target matches the directional transformation.

144

12.3. Develop a new Co-Evolution

Ź The transformation manager must register itself to the system by adding the extension
point de.uni_stuttgart.iste.cowolf.transformationManagerExtension.

Additionally, we define the following conventions. These are not necessary for the
execution of the transformation, but increase code quality in terms of readability and
consistency.

Ź The package name of all plugins should contain transformation.modelA_modelB, prefixed
by your company/product domain, suffixed with the sub packages.

For example: de.uni_stuttgart.iste.cowolf.transformation.dtmc_ctmc for the transfor-
mation between DTMC and CTMC.

Ź The key and reverse key should contain source and target model name.

For example, the key of the DTMC/CTMC transformation is ctmc_dtmc, describing
the transformation from CTMC to DTMC, and the reverse key is dtmc_ctmc analogous.
Concerning future improvements (cf. Section 14.2.2), it might be good a practice to
include a name of the transformation method or provider to ensure uniqueness in case
of multiple plugins for the same transformation.

12.3.2 Defining Transformation Rules

The transformation framework uses the SiLift SymmetricDifference provided by an evolu-
tion plugin. The transformations are defined with Henshin.

Traces

The traces provided by Henshin are the connection between a model instance of one side
of the transformation and the other side of the transformation. A trace contains one or
more source- and target-references. By convention, the source reference of a trace must
be connected to an object contained in the getManagedClass1 meta model, and the target
reference of a trace must be connected to an object contained in the getManagedClass2 meta
model. This is irrespective of the direction of the performed transformation. Subtraces are
not supported by the transformation framework.

It is worth noting that the traces are automatically treated to avoid side effects in the
trace’s references when working with model versions or moving the referenced model
instances on the file system. In this process, the file part of the reference is replaced
by a virtual identifier. This is transform:source for the instance of getManagedClass1

and transform:target for the instance of getManagedClass2. Information provided by the
ModelAssociationManager (9.2) is used to resolve these identifiers again. However, this
conversation is transparent in regular development.

145

12. Developer Guide

Figure 12.7. Components of the transformation graph

Provided Graph for a Transformation

Henshin works on an EGraph, containing all resources needed in the transformation rules.
This graph is automatically generated by the transformation framework and contains the
following components.

Ź The base version of the source model instance, which is used as point of origin to
identify changes.

If there was a transformation between these model instances in either direction before,
this version is selected. Otherwise, the initial version of the source instance, containing
only the root node of the model, is used.

Ź The current version of the source model instance.

Ź The current version of the target model.

Ź Traces between the base source version and the target, if available from the last co-
evolution.

Ź Traces between the current source version and the target.

This is a copy of the traces between the base source version and the target that is resolved
against the current source version. It also forms the basis for the resulting traces.

Ź The SymmetricDifference, containing information about what changed between the base
and the current source version.

In short, for every detected change there is an object that identifies the type of modi-
fication (e.g. AddObject, DelObject, AddReferenceObject, etc.). This object references to
either an object in the base source version (in case of deletion), the current source version
(in case of creation) or both (in case of modification). Additionally, it also contains
informations about correspondences in the base and the current source version and
about liftings found. For more details, please refer to the sections 5.1.5, 5.1.6 and the
SiLift documentation [Sof14b].

A diagram of all components and their interrelation is shown in Figure 12.7.

146

12.3. Develop a new Co-Evolution

Method 1: Mapping

Figure 12.8. Example of a mapping based transformation rule

SiLift detects changes in the source model by so-called recognition rules. This method
works by mapping each of recognition rules to a Henshin rule that performs the transfor-
mation for this change. This is done by comparing the name of the rule with the name
specified in the mapping. For every occurrence in the difference the specified Henshin
rule or unit is executed. Before executing the matched rules/units, these are sorted by
priority. This is needed because some rules have to be executed before others, otherwise
the transformation could produce false results or abort in some cases. If, for example, a
transition is created pointing to a new state, the state must be created before the transition
is.

In the specification of the mapping, parameters found by the recognition rule can be
passed to the transformation rule to identify the changed elements in Henshin. For example,
a created state in the source model can be found by its ID in Henshin and attributes like
name can be copied to the created state in the target model. Figure 12.8 shows how such a
Henshin rule can look like.

We always provide both source models, the old model (before the changes are made)
and the new model, thus both, created and deleted elements can be matched by their ID or
other properties defined by the mapping.

To use this method, the extension de.uni_stuttgart.iste.cowolf.transformationMappingExtension
must be added to the plugin for each direction, defining the direction key (either getKey

or getReverseKey) and the mapping file relative to the project root. For details how the
mapping can be specified in an external XML file, see Section 9.5.4.

Although this method is fully supported and is used by several of our provided
transformations, we do no longer recommend this method but to use the following method

147

12. Developer Guide

of directly working with the difference set. By using an external mapping file, the context
between the detected difference and the performed action is not obvious in the Henshin
rule file. Additionally, the names of the recognition rules may change in later development
and the mapping needs to be changed to match them again.

Method 2: Working on SiLift Differences

Figure 12.9. Example of a transformation rule using SiLift Differences

The aim of this method is to encapsulate all knowledge about the transformation into
the Henshin file. Therefore we provide the difference model from SiLift in the Henshin
graph. A Henshin rule now uses a ChangeObject from this information to identify the
changes in the source model, as shown in Figure 12.9. This allows the usage of multi-rules
for each operation which often makes the transformation rules smaller and performs better
than the rule mapping of the above method.

Co Wolf calls only one unit in the Henshin file, which is named mainUnit by default.
This unit must define the complete course of transformation, calling all rules in the needed
order. This method also allows to define more complex execution rules, for example based
on conditions or even recursive calls.

To use this method, the extension de.uni_stuttgart.iste.cowolf.transformationRuleExtension
must be added to the plugin for each direction, defining the direction key (either getKey

or getReverseKey) and one or more Henshin files (relative to project root) with their main
method. For very complex transformations, we added the possibility to separate the rules
to several Henshin files. These are called in the order of definition in the extension.

Defining a Custom Method

For transformations that can’t be done with one of the methods above and for integrat-
ing existing transformations, the process can be customized by overriding the method

148

12.3. Develop a new Co-Evolution

runTransformation(ResourceSet, SymmetricDifference) in the transformation manager class.
The EMF resource set contains all resources that are available for transformation, as

listed below. It is elementary to work only on these resources to avoid unwanted dependen-
cies and concurrency problems. To access one of the resources, ResourceSet.getResource(URL,
false) is used. The second parameter of this function defines, if a resource may be loaded
automatically on demand. This option as well as any other file system operations (load,
save) must not be used on the resources, as the resources are pure virtual and those
operations will fail.

The following resources are available. They are best accessed by the given constant
URLs or getter methods.

Ź RESOURCE_URL_OLD: The old source model.

Ź getSourceUri(ResourceSet): The current source model.

Ź getTargetUri(ResourceSet): The target model.

Ź RESOURCE_URL_OLDTRACES: The traces leading from the old source model to the target
model.

Ź RESOURCE_URL_TRACES: The traces leading from the current source model to the target
model.

Ź RESOURCE_URL_DIFF: The SiLift differences.

Ź RESOURCE_URL_RESULT: The resulting target model.

The SiLift differences are additionally given as second parameter to the method.
After performing the transformation, the new target model is to be saved in RESOURCE_-

URL_RESULT and the current traces in RESULT_URL_TRACES. These resources are then automati-
cally saved as the result.

For easier usage, the following methods may help:

Ź generateGraph generates a EGraph from the ResourceSet, that is needed for Henshin.

Generating the graph with all dependencies is not a trivial task, as explained in Sec-
tion 9.5.2. We really recommend to use this method instead of creating the graph by
oneself. Although, the method only adds the default resources, named above. If custom
resources are used, they need to be added into the graph afterwards.

Ź extractResultFromGraph extracts the resulting target model and traces from the graph
and saves them in the resource set.

Usually, if there are multiple transformations to perform, they are executed in sequence
to avoid problems with concurrency. Though, there is no warrant for that. Therefore, there
must not be used any class variables (fields) for dynamic content in the transformation
but all information should be passed as parameter. Another way is, to build an external
transformation class and create an instance of this class in runTransformation.

149

Chapter 13

Use of Co Wolf

This chapter explains how to use Co Wolf . It is thought as instruction manual for the user.
It starts with an explanation of the installation process and then shows how to create a new
model instance. Later it is described how to export models and how the internal version
management works. Finally, the usage of the main functions are shown: The evolution,
transformation and analysis of a model.

13.1 Installation
Author: Christian Karl Bernasko

The Co Wolf IDE integration requires Eclipse 3.4 (alias Luna) or higher and a Java JRE 7
or higher. In this section we will guide you through the installation process. The Co Wolf
project comes with three installation options:

Ź use the Eclipse product

Ź install from the update site

Ź compile from source

13.1.1 CoWolf Product
Author: Christian Karl Bernasko

To get a full eclipse together with Co Wolf we provide the following URL:
https://github.com/DevProjectSS2014/CoWolf/releases

13.1.2 Install from the Update Site
Author: Christian Karl Bernasko

If you already have an Eclipse 4.4 running you should install the Co Wolf dependencies
(Henshin, SiLift, Xtext) from one of the update sites listed below. To do so within Eclipse
choose Help Ñ Install New Software.... In the upcoming dialog you should paste one of
the update site URL’s into the field named work with. Click on the button "Select All" and
click "Next" and on the next page "Finish".

Co Wolf Dependencies:

151

https://github.com/DevProjectSS2014/CoWolf/releases

13. Use of Co Wolf

Ź Co Wolf makes use of Henshin in order to execute transformations between models.
http://www.eclipse.org/henshin/

Ź Co Wolf makes use of SiLift in order to calculate the differences between evolved models.
http://pi.informatik.uni-siegen.de/Projekte/SiLift/

It is recommended to use the latest stable version of SiLift for Co Wolf :
http://cowolf.github.io/SiliftUpdateSite/

Ź Co Wolf makes use of Sirius in order to edit the models in a graphical representation.
http://www.eclipse.org/sirius/index.html

Ź Co Wolf makes use of Xtext in order to verify PCTL rules.
http://www.eclipse.org/xtend/

Ź The last step is to install the Co Wolf product. Use the following URL to install Co Wolf :
https://github.com/DevProjectSS2014/p2_update_site/raw/master

13.1.3 Compiling CoWolf from Source
Author: Christian Karl Bernasko

In this section we will explain how to setup your development environment and how to
compile Co Wolf from source. We will first explain the setup process in general and then
will be going through a detailed step by step description of how to setup the environment.
At first we must install the fundamental tools, which are Git, Maven 3 and Eclipse. Then
we import the server certificate into the java keystore. This lets us communicate with the
Lismore server. Then we are ready to compile Co Wolf with the Maven standalone version.
In the next steps we are configuring the Eclipse IDE to make it able to compile the source
code. We will install several plugins and configure the target platform. After this tasks we
can compile Co Wolf .

Fundamental Build Tools

Download and install the following required tools:

Ź Eclipse 4.4 SDK (alias Luna)

Ź Apache Maven 3

Ź Git

Import the Server Certificate

We will use maven as our build tool of choice, in order that maven is able to commu-
nicate with the Nexus artifact repository. The certificate is required because our server
lismore.informatik.uni-stuttgart.de provides only a self-signed certificate. Maven depends

152

http://www.eclipse.org/henshin/
http://pi.informatik.uni-siegen.de/Projekte/SiLift/
http://cowolf.github.io/SiliftUpdateSite/
http://www.eclipse.org/sirius/index.html
http://www.eclipse.org/xtend/
https://github.com/DevProjectSS2014/p2_update_site/raw/master

13.1. Installation

on java and can only communicate with the Lisemore server of University Stuttgart, if the
certificate of the Lismore server is installed in the Java key store. This means you need to
accept the certificate before java can communicate with the server. Download the following
certificate from our website:

http://cowolf.github.io/lismore.informatik.uni-stuttgart.de.crt

Once the certificate is downloaded, install it with the following command into your
java keystore.

keytool -importcert -noprompt -keystore

<path-to-java-jre>/lib/security/cacerts -storepass changeit -alias

lismore.informatik.uni-stuttgart.de -file lismore.informatik.uni-stuttgart.de.crt

Listing 13.1. Self signed cert import.

Path to Java JRE:

Ź Windows: <JRE-Install-Dir>/bin

Ź Linux: /usr/lib/jvm/java-7-openjdk-amd64/jre/

When you finished this task, java is able to communicate with the lismore.informatik.uni-
stuttgart.de server.

Compile with Maven Standalone

At this point you are able to compile the Co Wolf source code with the maven build tool.
Maven will download all dependencies and install them into then .m2 repository within
your home directory. To compile the source code with the maven standalone version, clone
the repository from Github with the following command:
Git clone https://github.com/DevProjectSS2014/CoWolf.git

Then change into the directory de.uni_stuttgart.iste.cowolf.parent. In this directory type the
command mvn clean verify -X -e. The command will build the Co Wolf source code. The
result is a p2 repository which can be installed into an Eclipse IDE. To install the p2
repository use the following directory: de.uni_stuttgart.iste.cowolf.p2update/target/repository/

Compile within the Eclipse IDE

Within a running Eclipse IDE you should install the Co Wolf dependencies (UML2, SiLift,
Xtext, Henshin, EGit, M2E, RCP, EMF, Sirius, Swtbot, Maven Development Tools, OCL)
from one of the update sites listed below. To do so within Eclipse choose Help Ñ Install
New Software.... In the upcoming dialog you should paste one of the update site URL’s
into the field named Work with. Click on the button Select All and click Next and on the
next page Finish.

Ź UML2: Luna Update-Site: UML2 Extender SDK

153

http://cowolf.github.io/lismore.informatik.uni-stuttgart.de.crt
https://github.com/DevProjectSS2014/CoWolf.git
de.uni_stuttgart.iste.cowolf.parent
de.uni_stuttgart.iste.cowolf.p2update/target/repository/

13. Use of Co Wolf

Ź SiLift: http://cowolf.github.io/SiliftUpdateSite/

Ź Xtext 2.6.2 (also installs Xtend): Eclipse Marketplace http://download.eclipse.org/modeling/

tmf/xtext/updates/composite/releases

Ź Henshin: http://download.eclipse.org/modeling/emft/henshin/updates/release/

Ź EGit: Eclipse Marketplace (already supplied with Eclipse Java EE Developer Release)

Ź Maven Integration for Eclipse: Eclipse Marketplace (already supplied with Eclipse Java
EE Developer Release)

Ź Eclipse RCP Plug-in Developer Resources (adds plugins necessary for defining extension
points in Eclipse PDE):
http://download.eclipse.org/eclipse/updates/4.4 Version Tiger: Eclipse Marketplace

Ź EMF: http://download.eclipse.org/modeling/emf/emf/updates/ or http://download.eclipse.org/modeling/

emf/emf/updates/releases/ (Do not use the old aggregation update site http://download.eclipse.

org/modeling/emf/updates/releases)

Ź Sirius: Eclipse Marketplace

Ź Swtbot: http://download.eclipse.org/technology/swtbot/releases/latest/

Ź Maven Development Tools (adds lifecycle needed by Maven Plugin project): Eclipse
Marketplace

Ź OCL: Eclipse Marketplace

After installing the required plugins we need to import the Co Wolf project into eclipse.
We do this by using the dialog Import Ñ Projects from git Ñ Existing local repository use
the path to the cloned Co Wolf project and import it. After importing the project we need to
install the Ecore models of Co Wolf into eclipse, without installing the models maven is not
able to generate the Henshin rules while compiling. To do this we will export the following
models with the ExportÑ Deployable plug-ins and fragments dialog.

Ź de.uni_stuttgart.iste.cowolf.model.activity_diagram.featur

Ź de.uni_stuttgart.iste.cowolf.model.component_diagram.feature

Ź de.uni_stuttgart.iste.cowolf.model.ctmc.feature

Ź de.uni_stuttgart.iste.cowolf.model.dtmc.feature

Ź de.uni_stuttgart.iste.cowolf.model.fault_tree.feature

Ź de.uni_stuttgart.iste.cowolf.model.feature

154

http://cowolf.github.io/SiliftUpdateSite/
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases
http://download.eclipse.org/modeling/emft/henshin/updates/release/
http://download.eclipse.org/eclipse/updates/4.4
http://download.eclipse.org/modeling/emf/emf/updates/
http://download.eclipse.org/modeling/emf/emf/updates/releases/
http://download.eclipse.org/modeling/emf/emf/updates/releases/
http://download.eclipse.org/modeling/emf/updates/releases
http://download.eclipse.org/modeling/emf/updates/releases
http://download.eclipse.org/technology/swtbot/releases/latest/
de.uni_stuttgart.iste.cowolf.model.activity_diagram.featur
de.uni_stuttgart.iste.cowolf.model.component_diagram.feature
de.uni_stuttgart.iste.cowolf.model.ctmc.feature
de.uni_stuttgart.iste.cowolf.model.dtmc.feature
de.uni_stuttgart.iste.cowolf.model.fault_tree.feature
de.uni_stuttgart.iste.cowolf.model.feature

13.1. Installation

Ź de.uni_stuttgart.iste.cowolf.model.lqn.feature

Ź de.uni_stuttgart.iste.cowolf.model.statechart.feature

Ź de.uni_stuttgart.iste.cowolf.core.feature

On the destination tab use the “Install into host. Repository” option. Click finish. Now
we have successfully installed the models into the Eclipse IDE. Next we will configure the
target platform to enable logging.

Setting up the Logging Dependencies

For logging messages and exceptions we use the Logging framework Logback in the
recommended way with the Simple Logging Facade for Java (SLF4J). In every class that uses
logging a Logger object must be retrieved. For reducing the typing effort an appropriate
Eclipse Code Template will be defined.

Ź Open the Eclipse preferences (Window Ñ Preferences).

Ź choose Java Ñ Editor Ñ Templates and click on "New...".

Ź Define as name "log", as context "Java" and as Pattern the following:
$:import(org.slf4j.LoggerFactory, org.slf4j.Logger)
private final static Logger LOGGER = LoggerFactory.getLogger($enclosing_type)

At last we can build the source code by selecting the de.uni_stuttgart.iste.cowolf.parent

project and clicking the Run As Ñ Maven build Next set the Goals to “clean verify”
and click on Run. This setup will compile the source code.

To execute the application select the de.uni_stuttgart.iste.cowolf.ui project and select Run
As Ñ Run Configuration Ñ Eclipse Application. Next we need to select the plugins tab.
On the plugins tab remove the following plug-ins from your Co Wolf run configuration,
otherwise Logback will not be initialized correctly.

Ź all plug-ins containing m2e

Ź all plug-ins containing slf4j except slf4j.api (1.7.7)

Ź all plug-ins containing logback except ch.qos.logback.classic (1.1.2) and ch.qos.logback.core
(1.1.2)

When you click Run the Co Wolf application will start.

155

de.uni_stuttgart.iste.cowolf.model.lqn.feature
de.uni_stuttgart.iste.cowolf.model.statechart.feature
de.uni_stuttgart.iste.cowolf.core.feature
org.slf4j.LoggerFactory
org.slf4j.Logger
LoggerFactory.getLogger
de.uni_stuttgart.iste.cowolf.parent
de.uni_stuttgart.iste.cowolf.ui

13. Use of Co Wolf

13.2 Create New Models
Author: Verena Käfer

To create a new model you first have to create a new Co Wolf project via right-click Ñ New
Ñ Project Ñ CoWolf Ñ CoWolf Project as you can see in Figure 13.1

Figure 13.1. Create a new CoWolf project

Right-click on the project or folder where you want to create your new model and select
New Ñ Other Ñ CoWolf Ñ Models. Then select the model you want to create as it can bee
seen in Figure 13.2.

In the model creation wizard you can choose the parent folder and the root element of
the model. You can also decide if you want to have to create a graphical representation file
as well.

After creating a model with a graphical representation, the representation opens auto-
matically. On the right side you can see the elements which can be added to the diagram
in the middle. New elements can be added to the model by clicking an element icon on
the right side and afterwards clicking the position where it should be created.To add a
connection between two elements, click the connection icon on the right, click on the source
element and then on the target element. To create several elements of the same type just
press Ctrl during the process.

156

13.2. Create New Models

Figure 13.2. Create a new model

To edit the labels of an element, select the label, click once and then you can edit it. Some
properties cannot be edited in the editor. To edit them, open the properties view, selected
the element in the editor and then you can edit all properties as you wish.

To reopen a graphical editor, you need to find the aird file with the same name as your
model file. In Figure 13.3 you can see the structure for a component diagram and the
matching aird file. The aird file contains a folder with the representation and a link to
the model file. Open the folder and expand it as far as possible. Now you can see the
representation for your model. Double-click it and the editor will open. For LQN diagrams
please have a look at Section 13.2.1.

Figure 13.3. The structure of an aird file

157

13. Use of Co Wolf

13.2.1 What to do when...

This section describes some specialities with the graphical editors. The following points
may occasionally occur.

Ź You try to open the graphical editor but an error message is displayed like in Figure
13.4.

Figure 13.4. An error occurs while opening an editor

This happens mostly when opening an LQN editor after the first start of Eclipse.This
is caused by a known bug in Sirius. A workaround to open the editor is to delete the
according .aird file and create a new one by right-clicking on the model file and selecting
Create Graphical Representation.

Ź You rename or move a model and the error shown in Figure 13.5 shows up:

Figure 13.5. An error occurs while renaming or moving model files

This error occurs when the connection between the .aird file and the model file was lost
during a move or a rename. The connection will be restored automatically, but in some
cases the layout of the model will be reset.

Ź You move, rename or delete model files and a dialogue like in Figure 13.6 appears:

158

13.3. Export Models

Figure 13.6. This dialogue shows up after editing model files

When you move, rename or delete a model file, the according .aird file is also changed.
This dialogue asks you if you want to close the old version of the .aird file. Click Yes to
confirm. If you click No, there will be an old version of the .aird file which cannot be
opened any more as the according model file changed.

Ź You changed something in the properties view of an LQN editor and the changes are
not saved. This is also a known Sirius bug and only occurs for LQN models. Changing
an attribute that is not visualized in the graphical editor does not trigger a model
changed event. A workaround is to perform a small change, for example repositioning
an element, in the graphical editor and then saving the model.

13.3 Export Models
Author: Tim Sanwald

Co Wolf supports the export of CTMCs and DTMCs to the PRISM model language. Currently
verification and automated simulation are implemented directly in Co Wolf . PRISM further
supports the possibility to perform step-by-step simulation which is useful for debugging
models. PRISM also provides so called "experiments" as another analysis method. Most of
the users don’t need these functionalities which is why they’re not supported by Co Wolf
directly. Other users can export the model with the implemented export method to create
a PRISM model. This makes it possible to use the model with PRISM directly, so the whole
functionality can be used. In the following the process to export a CTMC or DTMC is
explained:

1. Open the export menu through by right clicking in the project explorer and choosing
"Export...".

2. Choose "CTMC to PRISM" or "DTMC to PRISM" which opens the model export wizard
(cf. Figure 13.7).

3. With the wizard it is possible to define the models which should be exported. The
export destination can be selected and the export of PCTLs can be enabled.

4. By clicking on the finish button to export the model to the specified destination as a
PRISM model for using it in PRISM.

159

13. Use of Co Wolf

Figure 13.7. Wizard to export a CTMCs to a PRISM model.

13.4 Working with Versions
Author: Philipp Niethammer

Co Wolf uses a simple version system to save and access states of a model instance that are
needed for co-evolution in the future. These versions are created automatically when they
are needed. Hence, a user can use Co Wolf without the need to know about versions at all.
Nonetheless, Co Wolf contains a set of features that make use of this system.

The most important of these functionalities is the possibility to inspect the evolution of
model instances over time. That is why we dedicated a separate section to it (Section 13.5).

In addition to this, a user can create a version manually at any time to save the current
state of the model instance by selecting CoWolf Ñ Versions Ñ Create Version in the file’s
context menu in the Project Explorer. The user can enter an optional message to describe
the new version.

It is also possible to revert the working copy to an older version. After selecting CoWolf

Ñ Versions Ñ Revert in the file’s context menu in the Project Explorer, the user is asked
to select the version to revert to. The model instance is then set to the state of the selected
version. This also creates a new version with the message “Reverted to version DATE.”,
where DATE is the date of the selected version.

To allow comfortable sharing of changes in a model instance with other team members
or between machines, it is possible to create a patch that contains the changes between
two versions. One way to do that is to run a difference calculation between two specific
versions as described in Section 13.5 and select the option “Save difference as patch” in the

160

13.4. Working with Versions

Figure 13.8. Before applying a patch, the user is shown the destined changes and asked for
confirmation.

Figure 13.9. After applying a patch, the user is shown the conducted changes in detail and the
resulting model.

161

13. Use of Co Wolf

dialogue as visible in Figure 13.10. Alternatively, it can be created by calling CoWolf Ñ

Versions Ñ Create patch in the file’s context menu which will open a similar dialogue.
Either way, the user can choose a directory to save the patch file in. The file’s directory is
selected as default value.

To apply an existing patch file to a model instance, the user calls CoWolf Ñ Versions

Ñ Apply patch and selects the patch file from the file system. After the patch is processed,
a special view is opened, showing the target model instance, the changes included in the
patch and which of these changes can or cannot be applied, as shown in Figure 13.8. The

user has to start the actual modification of the model instance by pressing . After the
execution, the model instance is edited and the view shows information about the process
(Figure 13.9).

13.5 Evolution of a Model
Author: Michael Zimmermann

There are two ways showing for the evolution of a model. Depending on the users purpose,
he can choose one of them:

Ź Showing only the difference between two specific model versions.

The user has to right click on the model for which he wants to see the difference between
two model versions. He then has to go to CoWolf Ñ Versions and left click on Show

differences. This will open the Model Difference Wizard (see Figure 13.10). Here the
user can specify the two model versions he wants so see the difference of. On the left
side he has to choose which version should be the base version and accordingly on
the right side of the wizard he has to choose the target version of the model. In the
provided example the resulting difference will show the modifications on the model
from the previously executed co-evolution (Co-evolution from models/My.ctmc). It is
also possible to save the calculated difference as patch that can be applied to another
model version if needed.

Figure 13.11 shows the resulting difference of the previous example. The main entries
like "CREATE_State_IN_DTMC_(States)" are the change sets lifted by SiLift and represent
user edit operations. The child elements of these change sets are the low-level or
technical differences of the two model versions calculated by SiDiff. In the properties
view at the bottom of the image you can see the values of changed attributes.

Ź Showing the differences between all model versions and therefore the entire model
evolution.

The user has to right click on the model for which he wants to see the complete evolution.
He then has to go to CoWolf and left click on Show Evolution. This will open the Model

Evolution view. Figure 13.12 shows the complete evolution history for the example

162

13.6. Co-Evolve a Model

Figure 13.10. Model Difference Wizard of CoWolf. Here the user can specify the two model versions
he wants so see the difference of.

model. The user can easily retrace the entire development cycle and check when the
model was changed and what was changed in detail.

13.6 Co-Evolve a Model
Author: Rene Trefft

The source and target models which participate in the co-evolution must be contained
in the same Co Wolf -project. Further ensure that the source model is valid, otherwise
the co-evolution can’t be executed. Right click on the source model (not the graphical
representation file aird) and select CoWolf Ñ Co-Evolve in the context menu. In the
appearing wizard (see img. 13.13) select the desired target models.

Note, only those models are shown for which a co-evolution is supported from the
source model. To finally perform the co-evolution from the source model to the selected
target models, click on Finish. During the execution the current progress is shown. When
the co-evolution is finished the view Co-Evolution results (see img. 13.14) appears and
shows which changes were applied to the target models.

Source and target models are linked after the execution. If the source model changes, a
warning is shown in the Problems view for every linked file (see img. 13.15) to remember
the user to perform a co-evolution again.

163

13. Use of Co Wolf

Figure 13.11. Calculated difference of two model versions.

164

13.6. Co-Evolve a Model

Figure 13.12. Evolution view of an example model.

165

13. Use of Co Wolf

Figure 13.13. Co-Evolution Wizard of CoWolf. Here the user can specify the target models of the
co-evolution. In this case the DTMC diagram will be co-evolved to a CTMC and a Statechart diagram.

166

13.6. Co-Evolve a Model

Figure 13.14. Co-Evolution Results View of CoWolf. Here the user can see the lifted change sets (with
their low level changes) which were applied on the target models of the co-evolution. For example
on the CTMC diagram the state creation change set was applied which consists of an add-object and
an add-reference low level change.

Figure 13.15. If the source model changes after a co-evolution, warnings are shown in the Problems
view for every linked model.

167

13. Use of Co Wolf

13.7 Analyze a Model
Author: David Steinhart

Co Wolf has four different quality of service models, which are DTMC, CTMC, LQN and
Faulttree models. These four model types can be analyzed using the corresponding tools.
For DTMC and CTMC analysis, PRISM [Pri] is needed. For LQN models, the LQNS [Lqn]
tool is required. And for Faulttree models, xFTA [Xft] is required.

The concept for analyzing a model is the same for all model types. The first step is to
make sure that the required tools have been installed and the path to each of these tools
has been set in the properties. To set the path, select WindowÑPreferences to get to the
Preferences view. Select the entry labeled CoWolfÑModels on the left hand side and select
the required model there.

Figure 13.16. Preferences view for CTMC

When

the path to the required tool has been set, you need to make sure that the model you want
to evaluate is valid. To make sure that a model is valid, open the graphical representation
file of the model, right-click and select "Validate diagram". You can also open the tree
view editor, right-click the top node of the model and click "Validate". It is important to
click the top node in the tree view editor, otherwise only the selected element and all of
its children will be validated. If a model is not valid, any errors found will be shown in
the Problems window as well as in the graphical and the tree view editor. Validating the
models is necessary, otherwise the analysis tool might either throw an exception or return
wrong results.

168

13.7. Analyze a Model

To start the analysis, right-click the model you want to analyze and select CoWolfÑAnalyze.
A different wizard will be shown for each model. When the analysis has been executed
successfully, the results are saved to an HTML-document.

LQN

The LQN analysis wizard provides only one option, which is to solve the selected LQN
model. Select Finish to perform the analysis.

Fault Tree

The Faulttree analysis wizard has two options. It is possible to calculate the probability
of the top event, which indicates how likely the top hazard will occur. It is also possible
to calculate a minimal cutset to find all possible combinations which will trigger the top
hazard. Select the required option, then select Finish to perform the analysis.

DTMC

The DTMC analysis wizard can be used to select states for which a reachability analysis
should be performed. PRISM supports two kinds of reachability analyses, verification
and simulation. Verification analyses the behavior of the DTMC when an infinite number
of steps would be performed. The results are therefore always the same and evenly
distributed. Simulation runs an experiment with a given number of samples, a maximum
path length and a required confidence. For simulations, results vary for each run and
for each configuration. After choosing either verification or simulation, the states and
labels that should be analyzed have to be selected. There is also the option to include all
absorbing states, which are all states that do not have any outgoing transitions. When all
required states and labels have been selected, click Finish to run the analysis.

CTMC

The CTMC analysis wizard can be used to perform basic reachability and performance
analysis, but can also be customized to analyze a wide range of properties. The CTMC
analysis wizard contains a list of all properties that have been created so far. Check the
box on the left hand side of an existing property if you want to analyze it. Select Finish
to analyze all selected properties. To add a property, click the Add-button on the bottom
right. To edit or delete a property, highlight it in the list and the click the Edit-button or the
Delete-Button. When a property is added or edited, the property wizard will be opened.

169

13. Use of Co Wolf

Figure 13.17. CTMC properties wizard
The property wizard contains a drop down menu at the very top which offers four

different options: Steady State Probability, Probabilistic Existence, Probabilistic Until and
Probabilistic Response. When selecting one of the properties, the corresponding fields in
the top area will become editable. The texts on the left hand side and the drop down menus
next to them form a sentence that explains what can be analyzed with the current property.
When all required fields are filled in and "Create Property" is clicked, the corresponding
PCTL definition of the property is calculated and inserted in the Xtext text field at the
bottom. Additionally, a suggestion for a meaningful title is created. As some users may
be interested in analyzing additional, more complex properties, the Xtext text field at the
bottom can be edited. It is possible to create PCTL expressions, which will be validated
right away and errors will be highlighted. The Xtext text field contains auto-completion
using Ctrl+Space. Boolean Expressions can be nested using and (&), or (|), not (!), true
(true) and false (false) and need to be in brackets. States and Labels need to follow the
form ’State:"State Name"’ and ’Label:"Label Name"’.

170

Chapter 14

Future Work

During the work on Co Wolf we realized that there are a few things that would make the
usage of Co Wolf easier but could not be done yet. They are described here.

14.1 Development
Author: Verena Käfer

There are some approaches which could make the development easier. These are described
in the following section.

14.1.1 Static Analysis on Rules for Automatic Prioritization

During a transformation between two models, the used transformation rules are executed
in a specific order. For example must a state always be created before an attached label
can be created in this state. To do this every rule has a manually set priority. This can lead
to errors, as it is possible that after the creation of a new rule to simply forget to redo the
prioritization.
A much better solution would be a static analysis of the rules to decide on the fly which
rule has to be used first in each case. This could prevent human errors.

14.1.2 Iterative Sample-based Rule Generation

At the moment all transformation rules between two models have to be done by hand. It
would be nice to be able to create the rules automatically. One approach could be to find a
small rule base from samples of corresponding models and then iteratively extend this rule
base by analysing further samples or manual co-evolution.

14.2 Functionality
Author: Verena Käfer and Philipp Niethammer

This section describes features and functionality for the Co Wolf program on the end user
side. In difference to the last section about the development of new features, it concentrates
on what could improve the user experience of Co Wolf .

171

14. Future Work

14.2.1 Multiple Analysis Methods

In the current architecture, the analysis is a fixed part of a QoS model plugin. Because of
that, it is currently not possible to provide the model analysis separately from the model or
to provide multiple methods to analyze a model instance. Though, this might be a very
interesting feature if different tools allow for different analysis techniques or, for example,
to integrate a commercial tool.

14.2.2 Multiple Transformation Providers

In the current version of Co Wolf every transformation has exactly one set of rules which is
executed. There might be situations in which it is necessary to have different transformation
rules between two models for different results, for example to have different transformed
elements for an analysis. This would mean that the user could choose which rule base to
take before a transformation.

14.2.3 Synchronization between two Model Instances

As an extension to the unidirectional co-evolution between models, a synchronization of
changes in models discovers changes on both sides (A and B) simultaneously and separates
them in three sets: changes that are made solely in model A, changes solely in model B
and last, changes that are made in both models, either conflicting or corresponding.

For example, a user may create the state named “MyNewState” in both, the State Chart
and the associated DTMC. The synchronization detects this corresponding change and
adds a trace between the created states to save it. On the other hand, existing, associated
states could have been renamed differently. With simple serial co-evolution, the order of
execution is important as the first direction overwrites the changes in the target model and
thus leads to a lost update. With synchronization, the changes are detected as conflicting
and a solution can be found, e.g. by letting the user decide to skip this transformation or
choose the applied direction.

14.2.4 Automatic Co-Evolution and Synchronization

Currently when the user makes changes in a model instance, a warning is shown on all
associated models that they should be updated, but the user has to start the co-evolution
himself. To improve the user experience, the co-evolution could be executed automatically.
For example, after the user makes a change in a component diagram, this change is
immediately propagated to corresponding fault trees and to DTMC instances associated
with any of these fault trees afterwards.

While the automatic execution is relatively easy as we can find all associated model
instances using the ModelAssociationManager, we see three major obstacles:

172

14.2. Functionality

First, before we can execute the automatic co-evolution, the order of execution must
be planned and cycles identified and solved. Cycles can be either direct, when the
transformation is supported bi-directional, or indirect, running over several instances. On
one hand, undetected cycles can lead to an infinite loop and must be prevented at all costs,
on the other hand, a suboptimal solution could stop the process too early so that not all
changes are propagated completely.

Second, a transformation is only possible if the source model is valid. Often, model
instances are not valid after transformation and the user has to complete them manually.
The hierarchical co-evolution would either abort here - maybe invalidating the execution
plan - or interact with the user to complete the information on the fly. This might be
unwanted by the user.

Third, automatic co-evolution is mainly a matter of performance. According to our
evaluation (cf. Chapter 11), a single co-evolution takes at least about 10 seconds at the
moment, even for a small change set in a relatively small model. This may become quite
annoying for the user, if it automatically happens too often, e.g. on every save. This could
be relieved by triggering it less often, what can in turn jeopardize the idea of automatic
execution.

14.2.5 Work with Delta Sets

In our evaluation (Chapter 11) we showed, that co-evolution is normally much faster than
simple transformation for big models. Admittedly, the duration of the co-evolution is not
independent of the size of the model instance, though. During the transformation process,
Henshin searches for a specific pattern of objects and dependencies in the transformation
graph. This graph contains of three model instances, two sets of traces and the difference
information, as described in Section 12.3.2. Obviously, with increasing size of model
instances, and hence graph, the pattern matching process slows down.

But the greater part of the source model instances might not even be used by the
transformation. By analyzing the transformation rules that are to be executed, unnecessary
parts of the instances could be filtered before execute the transformation.

On the target side, one could think about generating a change set instead of modifying
the target instance directly. Thus, the target side is empty in the beginning and its size only
depends on the size of changes, not the size of instances. After the transformation, the
target instance is modified en bloc according to the change set.

14.2.6 Headless Operation

With increasing size of models and therefore increasing duration of operations like co-
evolution or analysis, a common working station computer will come to its limits. As it
is already common practice in software development or video editing, a dedicated work
machine or cluster could be used to accelerate the execution. This requires a headless
operation of these operations, that is, the direct execution from, e.g., a command line

173

14. Future Work

without the need of a GUI or a complex infrastructure. Achieving that, a company could for
example run nightly jobs to transform models in an analyzable form, analyze it afterwards
and integrate the results in their quality management and continuous integration system
in that way.

14.2.7 Merged Model Editor

To see the connection between two or more models it could be useful to open several
models and their traces in one editor. The connection between the models would be clearly
visible and it would also be possible to refactor the models, for example to reset traces or
to create new traces.

14.2.8 Model Annotation Infrastructure

Showing the results of an analysis directly in the model instance is already a feature that is
asked for. While it is an easy task to extend the models for fields holding the analysis result
and writing to these fields after analysis, this increases the complexity of the models and is
not flexible when using different analysis methods that results in different types of results.
Promising instead is the idea of creating a generic infrastructure to annotate instances with
all kinds of data and referencing services in these annotations that describe the further
usage of the data. In this way, for example, an analysis method could describe how the
data is displayed in the editor and even, how it is transformed for another model type. For
example, the CTMC analysis method could not only define how the analysis results are
annotated to the CTMC model instance, but also how these results can be transformed to
be annotated to the associated fault tree.

174

Chapter 15

Conclusion
Author: Verena Käfer

As stated in the introduction, models are important in today’s software systems. However, a
classic transformation between two models takes too long and looses tom much information.
To increase this, Co Wolf uses an incremental transformation approach. It supports seven
different models and the transformations between pairs of them as well as the analysis of
some of them.

For Co Wolf we had three main goals explained in the introduction and it can be said,
that we reached all of them:

Ź The management of associations between Model Instances

Ź Deliver utilities for model development and analysis

Ź The co-evolution of an associated model on the basis of evolutions

Co Wolf stores the associations between different model instances and also reminds you
of a new co-evolution if a model has changed. It provides an easy user interface with
graphical editors for every model as well as wizards for the analysis of the quality of
service models. Most important, it can do an incremental transformation between two
models.

To do such an incremental transformation we first need the difference between the
current version and previous version of a model. This difference is mapped on Henshin
rules which indicate what has to be changed in the second model. Then the changes are
applied.

This leads to two main advantages. First, the time for applying the changes is much
faster for an incremental transformation as for a complete transformation. Second, the
adoptions the user has to make after the transformations are less for the incremental
approach because the changes the user already made are not lost. This saves a lot of time.
We evaluated both, the faster transformations and the smaller amount of adoptions, in a
case study.

Of course there are some things left for future work but all in all Co Wolf includes
everything we wanted to do. It is a useful framework for incremental model transformation
which can save a lot of time and work as it is open source and extensible. There are no
borders on making improvements for new models or analyses. In our opinion it is a step in
the right direction to do incremental transformations between models and Co Wolf supports
this.

175

Bibliography

[Are+10] Thorsten Arendt et al. “Henshin: advanced concepts and tools for in-place
emf model transformations”. In: Proceedings of the 13th International Conference
on Model Driven Engineering Languages and Systems: Part I. MODELS’10. Oslo,
Norway: Springer-Verlag, 2010, pp. 121–135.

[Bar07] Neil Bartlett. A Comparison of Eclipse Extensions and OSGi Services. Feb.
2007. url: http://www.eclipsezone.com/articles/extensions-vs-services.

[BCS07] H. Boudali, P. Crouzen, and M. Stoelinga. “Dynamic fault tree analysis using
input/output interactive markov chains”. In: Dependable Systems and Networks,
2007. DSN ’07. 37th Annual IEEE/IFIP International Conference on. June 2007,
pp. 708–717.

[BET10] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. “Lifting parallel
graph transformation concepts to model transformation based on the eclipse
modeling framework”. In: ECEASST 26 (2010).

[Bie+06] Enrico Biermann et al. “Graphical definition of in-place transformations in the
eclipse modeling framework”. In: Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems. MoDELS’06. Genova, Italy:
Springer-Verlag, 2006, pp. 425–439.

[Bor07] Artur Boronat. “Moment: a formal framework for model management”. In:
PhD in Computer Science, Universitat Politenica de Valencia (UPV), Spain (2007).

[BP08] Cédric Brun and Alfonso Pierantonio. “Model differences in the eclipse mod-
eling framework”. In: UPGRADE, The European Journal for the Informatics Profes-
sional (2008).

[Bra11] MGJ Brand. “Rcvdiff - a stand-alone tool for representation, calculation and
visualization of model differences”. In: ME 2010 International Workshop on
Models and Evolution (Oslo, Norway, October 3, 2010; co located with ACM/IEEE
13th International Conference on Model Driven Engineering Languages and Systems)
(2011).

[BV06] András Balogh and Dániel Varró. “Advanced model transformation language
constructs in the viatra2 framework”. In: Proceedings of the 2006 ACM Sym-
posium on Applied Computing. SAC ’06. Dijon, France: ACM, 2006, pp. 1280–
1287.

[CDMI11] Vittoria Cortellessa, Antinisca Di Marco, and Paola Inveradi. Model-Based
Software Performance Analysis. Springer, 2011.

177

http://www.eclipsezone.com/articles/extensions-vs-services

Bibliography

[Cha01] Scott Chancon. GitHub Flow. 20011. url: http://scottchacon.com/2011/08/31/github-
flow.html.

[CKB14] University of Stuttgart Christian Karl Bernasko. Seminar paper: Continuous
delivery and Continuous integration. Apr. 2014.

[DN93] Lorenzo Donatiello and Randolph Nelson. Performance Evaluation of Com-
puter and Communication Systems. Vol. 729. Lecture Notes in Computer
Science. Springer, 1993.

[Ehr+06] H. Ehrig et al. Fundamentals of Algebraic Graph Transformation (Monographs
in Theoretical Computer Science. An EATCS Series). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

[Emf] Eclipse Modeling Framework project page. url: http://www.eclipse.org/modeling/
emf/.

[ER08] Steven Epstein and Antoine Rauzy. Open-PSA Model Exchange Format. 2008.
url: http://www.open-psa.org/.

[Fra+13] Roy Gregory Franks et al. Layered Queueing Network Solver and Simulator
User Manual. 2013. url: http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf.

[Fra99] Roy Gregory Franks. “‘Performance Analysis of Distributed Server Systems’”.
PhD thesis. Carleton University, 1999.

[Gal] Robert Gallager. Finite-State Markov Chains. url: http://ocw.mit.edu/courses/

electrical-engineering-and-computer-science/6-262-discrete-stochastic-processes-spring-

2011/course-notes/MIT6_262S11_chap03.pdf.

[Gar+07] Hubert Garavel et al. “CADP 2006: A toolbox for the construction and analysis
of distributed processes”. In: Computer Aided Verification, 19th International
Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings. 2007, pp. 158–
163.

[GHS09] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. “Improved flexibility
and scalability by interpreting story diagrams”. In: ECEASST 18 (2009).

[GPH14] Ceki Gülcü, Sébastien Pennec, and Carl Harris. Logback Manual. 2014. url:
http://logback.qos.ch/manual.

[HF10] Jez Humble and David Farley. Continuous Delivery - Reliable Software Re-
leases Through Build, Test, and Deployment Automation. 1. Aufl. Amsterdam:
Addison-Wesley, 2010.

[HK10] Markus Herrmannsdoerfer and Maximilian Koegel. “Towards a generic op-
eration recorder for model evolution”. In: Proceedings of the 1st International
Workshop on Model Comparison in Practice. IWMCP ’10. New York, NY, USA:
ACM, 2010, pp. 76–81.

178

http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.open-psa.org/
http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-262-discrete-stochastic-processes-spring-2011/course-notes/MIT6_262S11_chap03.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-262-discrete-stochastic-processes-spring-2011/course-notes/MIT6_262S11_chap03.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-262-discrete-stochastic-processes-spring-2011/course-notes/MIT6_262S11_chap03.pdf
http://logback.qos.ch/manual

Bibliography

[JE04] Sven Johann and Alexander Egyed. “Instant and incremental transformation
of models”. In: Proceedings of the 19th IEEE International Conference on Automated
Software Engineering. ASE ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 362–365.

[Keh+14a] Timo Kehrer et al. SiLift. 2014. url: http://pi.informatik.uni-siegen.de/Projekte/

SiLift/.

[Keh+14b] Timo Kehrer et al. SiLift: Tool Environment Overview. 2014. url: http://pi.

informatik.uni-siegen.de/Projekte/SiLift/overview.php.

[Ker] Kermeta - Website. 2014. url: http://kermeta.org.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: verification of prob-
abilistic real-time systems”. In: Proc. 23rd International Conference on Computer
Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806.
LNCS. Springer, 2011, pp. 585–591.

[Kol+07] D.S. Kolovos et al. “Update transformations in the small with the epsilon
wizard language”. In: Journal of Object Technology 6.9 (2007), pp. 53–69.

[KR06] Harmen Kastenberg and Arend Rensink. “Model checking dynamic states in
groove”. In: Proceedings of the 13th International Conference on Model Checking
Software. SPIN’06. Vienna, Austria: Springer-Verlag, 2006, pp. 299–305.

[Kus00] Sabine Kuske. “‘Transformation Units – A structuring Principle for Graph
Transformation Systems’”. PhD thesis. University of Bremen, 2000.

[Kög08] Maximilian Kögel. “TIME - tracking intra- and inter-model evolution”. In:
Software Engineering 2008 - Workshopband, Fachtagung des GI-Fachbereichs Soft-
waretechnik, 18.-22.2.2008 in München. 2008, pp. 157–164.

[Kön10] Patrick Könemann. “Capturing the intention of model changes”. In: Proceedings
of the 13th International Conference on Model Driven Engineering Languages and
Systems: Part II. MODELS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 108–
122.

[Ley13] Frank Leymann. Model Driven Architecture. University Lecture. 2013.

[LFVH13] Christoph Legat, Jens Folmer, and Birgit Vogel-Heuser. “Evolution in industrial
plant automation: a case study”. In: Industrial Electronics Society, IECON 2013-
39th Annual Conference of the IEEE. IEEE. 2013, pp. 4386–4391.

[LO92] Ernst Lippe and Norbert van Oosterom. “Operation-based merging”. In: Pro-
ceedings of the Fifth ACM SIGSOFT Symposium on Software Development Environ-
ments. SDE 5. New York, NY, USA: ACM, 1992, pp. 78–87.

[Lqn] Layered Queueing Network Solver and Simulator Website. url: http://www.sce.
carleton.ca/rads/lqns/.

[MB+14] G. Blondelle M. Barbero L. Goubet et al. EMF Compare/CompareUMLPa-
pyrusAPI. 2014. url: http://wiki.eclipse.org/EMF_Compare/CompareUMLPapyrusAPI.

179

http://pi.informatik.uni-siegen.de/Projekte/SiLift/
http://pi.informatik.uni-siegen.de/Projekte/SiLift/
http://pi.informatik.uni-siegen.de/Projekte/SiLift/overview.php
http://pi.informatik.uni-siegen.de/Projekte/SiLift/overview.php
http://kermeta.org
http://www.sce.carleton.ca/rads/lqns/
http://www.sce.carleton.ca/rads/lqns/
http://wiki.eclipse.org/EMF_Compare/CompareUMLPapyrusAPI

Bibliography

[MM01] Joaquin Miller and Jishnu Mukerji. Model Driven Architecture - A Technical
Perspective. 2001. url: http://www.omg.org/cgi-bin/doc?ormsc/01-07-01.pdf.

[Mol] MOLA - Website. 2014. url: http://mola.mii.lu.lv.

[Ocl] Object Constraint Language (OCL). url: http://www.omg.org/spec/OCL.

[OMG14] Object Management Group. Model Driven Architecture (MDA): The MDA
Guide Rev 2.0. 2014. url: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf.

[Pal] Palladio. url: https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model.

[Pri] PRISM Website. url: http://www.prismmodelchecker.org.

[Rau12] Antoine Rauzy. XFTA Manual. 2012. url: http://www.lix.polytechnique.fr/~rauzy/

xfta/XFTA-Manual.pdf.

[Rin14] Michaela Rindt. SERGe - SiDiff EditRule Generator. 2014. url: http : / / pi .

informatik.uni-siegen.de/Mitarbeiter/mrindt/SERGe.php.

[Roy70] Winston W Royce. “Managing the development of large software systems”. In:
proceedings of IEEE WESCON. Vol. 26. 8. Los Angeles. 1970.

[Sch97] Ken Schwaber. “‘SCRUM Development Process’”. English. In: Business Object
Design and Implementation. Springer London, 1997, pp. 117–134.

[Sd] UML Sequence Diagrams. url: http://www.uml-diagrams.org.

[SDG09] J. Sutherland, S. Downey, and B. Granvik. “Shock therapy: a bootstrap for
hyper-productive scrum”. In: Agile Conference, 2009. AGILE ’09. Aug. 2009,
pp. 69–73.

[Sha] Mehrdad Mirshams Shahshahani. Continuous Time Processes. url: http://web.
stanford.edu/class/stat217/Chapter3.pdf.

[Sir] Sirius. url: http://www.eclipse.org/sirius/.

[Slf] SLF4J Manual. 2014. url: http://www.slf4j.org/manual.html.

[SS13] Ken Schwaber and Jeff Sutherland. Scrum Guide. 2013. url: http : / / www .

scrumguides.org/scrum-guide.html.

[SS14] Ken Schwaber and Jeff Sutherland. Scrum History. 2014. url: http : / / www .

scrumguides.org/history.html.

[SZN04] Christian Schneider, Albert Zündorf, and Jörg Niere. “Coobra – a small step for
development tools to collaborative environments”. In: Workshop on Directions
in Software Engineering Environments; 26th international conference on software
engineering. 2004.

[Tae+14] Gabriele Taentzer et al. “A fundamental approach to model versioning based
on graph modifications: from theory to implementation”. English. In: Software
& Systems Modeling 13.1 (2014), pp. 239–272.

180

http://www.omg.org/cgi-bin/doc?ormsc/01-07-01.pdf
http://mola.mii.lu.lv
http://www.omg.org/spec/OCL
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model
http://www.prismmodelchecker.org
http://www.lix.polytechnique.fr/~rauzy/xfta/XFTA-Manual.pdf
http://www.lix.polytechnique.fr/~rauzy/xfta/XFTA-Manual.pdf
http://pi.informatik.uni-siegen.de/Mitarbeiter/mrindt/SERGe.php
http://pi.informatik.uni-siegen.de/Mitarbeiter/mrindt/SERGe.php
http://www.uml-diagrams.org
http://web.stanford.edu/class/stat217/Chapter3.pdf
http://web.stanford.edu/class/stat217/Chapter3.pdf
http://www.eclipse.org/sirius/
http://www.slf4j.org/manual.html
http://www.scrumguides.org/scrum-guide.html
http://www.scrumguides.org/scrum-guide.html
http://www.scrumguides.org/history.html
http://www.scrumguides.org/history.html

Bibliography

[UI08] Francis Upton IV. Support IResourceDelta.COPIED_FROM on IResourceChange-
Listener. Feb. 2008. url: https://bugs.eclipse.org/bugs/show_bug.cgi?id=217489.

[Umla] UML 2. url: http://www.eclipse.org/modeling/mdt/?project=uml2.

[Umlb] UML-Designer. url: https://github.com/ObeoNetwork/UML-Designer.

[Vog13a] Lars Vogel. Eclipse p2 updates for RCP applications - Tutorial. June 2013. url:
http://www.vogella.com/tutorials/EclipseP2Update/article.html.

[Vog13b] Lars Vogel. OSGi Modularity - Tutorial. June 2013. url: http://www.vogella.com/

tutorials/OSGi/article.html.

[Vog14] Lars Vogel. Extending the Eclipse IDE - Plug-in development - Tutorial. Feb.
2014. url: http://www.vogella.com/tutorials/EclipsePlugIn/article.html.

[Xft] XFTA Website. url: http://www.lix.polytechnique.fr/~rauzy/xfta/xfta.htm.

[Xte] Xtext. url: http://www.eclipse.org/Xtext/.

[Cuc13] Cucumber Team. Gehrkin. 2013. url: https://github.com/cucumber/cucumber/wiki/

Gherkin.

[IBM+08] IBM Corporation et al. Resource Set (EMF Javadoc). 2008. url: http://download.
eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/resource/ResourceSet.

html.

[OCL14] OCLinEcore. Oct. 2014. url: http://wiki.eclipse.org/OCL/OCLinEcore.

[Sof14a] Software Engineering Group, University of Siegen. SiDiff. 2014. url: http:

//pi.informatik.uni-siegen.de/Projekte/sidiff/index.php.

[Sof14b] Software Engineering Group, University of Siegen. SiLift - Benutzerhandbuch
für Endanwender. Apr. 2014. url: http://pi.informatik.uni- siegen.de/Projekte/

SiLift/downloads/userguide_enduser.pdf.

[Sof14c] Software Engineering Group, University of Siegen. The SiDiff Components.
2014. url: pi.informatik.uni-siegen.de/Projekte/sidiff/components.php.

[The14a] The Apache Software Foundation. Apache Maven - Website. 2014. url: http:

//maven.apache.org.

[The14b] The Eclipse Foundation. EMFCompare - Compare and Merge Your EMF
Models. 2014. url: http://www.eclipse.org/emf/compare/.

181

https://bugs.eclipse.org/bugs/show_bug.cgi?id=217489
http://www.eclipse.org/modeling/mdt/?project=uml2
https://github.com/ObeoNetwork/UML-Designer
http://www.vogella.com/tutorials/EclipseP2Update/article.html
http://www.vogella.com/tutorials/OSGi/article.html
http://www.vogella.com/tutorials/OSGi/article.html
http://www.vogella.com/tutorials/EclipsePlugIn/article.html
http://www.lix.polytechnique.fr/~rauzy/xfta/xfta.htm
http://www.eclipse.org/Xtext/
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/cucumber/cucumber/wiki/Gherkin
http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/resource/ResourceSet.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/resource/ResourceSet.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/resource/ResourceSet.html
http://wiki.eclipse.org/OCL/OCLinEcore
http://pi.informatik.uni-siegen.de/Projekte/sidiff/index.php
http://pi.informatik.uni-siegen.de/Projekte/sidiff/index.php
http://pi.informatik.uni-siegen.de/Projekte/SiLift/downloads/userguide_enduser.pdf
http://pi.informatik.uni-siegen.de/Projekte/SiLift/downloads/userguide_enduser.pdf
pi.informatik.uni-siegen.de/Projekte/sidiff/components.php
http://maven.apache.org
http://maven.apache.org
http://www.eclipse.org/emf/compare/

Glossary

Ecore Metamodel Part of the Eclipse Modeling Framework (EMF). A meta model for describ-
ing object oriented models using mainly packets, classes, references and attributes . 35,
36

Ecore Model The abstract definition of a model using the Ecore meta model. 29, 32, 93

Maintenance engineer A person which supports the functionality of the system after the
development project. 28, 29, 34

Model Instance Data that follows the scope, structure and rules of a model. A Model
Instance can change over time. This process is called evolution. This data is typically
either represented as Java objects or serialized in an XML data structure . 2, 30, 32, 93,
95

Model Plugin Part of the Co Wolf architecture. One or more Eclipse plugins, clustered as
feature. A Model Plugin contains the meta model, the analyzes for quality of service
models and one ore many editors for model instances. . 95, 144

Model Version Describes a specific state in the evolution of a model instance. 93–95

user A person which uses the deployed system. 27–34

183

Acronyms

CTMC Continous Time Markov Chain. 29–31, 33, 42, 95–97, 159, 160, 168, 169

DTMC Discrete Time Markov Chain. 27, 29–31, 33, 42, 95, 96, 159, 168, 169

EMF Eclipse Modeling Framework. 35–37, 103, 134, 136

JAXB Java Architecture for XML Binding. 106

LQN Layered Queueing Network. 29, 31, 33, 55, 58, 59, 61, 74–76, 91, 92, 95, 97, 168, 169

OCL Object Constraint Language. 30, 36

PCTL Probabilistic Computation Tree Logic. 30, 159

QoS Quality of Service. 95, 172

VCS Version Control System. 22, 93, 95

185

Declaration

I hereby declare that the work presented in this thesis is entirely my own and that I did
not use any other sources and references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as quotations. Neither this work
nor significant parts of it were part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is consistent with all submitted
copies.

Stuttgart, 21 October 2014,

Christian Karl Bernasko

Verena Käfer

Michael Müller

Tim Sanwald

David Steinhart

Johannes Wolf

Manuel Borja

David Krauss

Philipp Niethammer

Jonas Scheurich

Rene Trefft

Michael Zimmermann

187

	1 Introduction
	1.1 Goals
	1.2 Document Structure

	2 Related Work
	2.1 Model Driven Development
	Motivation
	Transformations

	2.2 Model Difference
	2.3 Model Transformation

	3 Project Management
	3.1 Scrum
	3.1.1 Sprint Schedule
	3.1.2 Tasks Management

	3.2 Team
	3.3 Roles
	3.4 Continuous Delivery
	3.4.1 Continuous Integration Process
	3.4.2 Continuous Delivery Infrastructure
	3.4.3 Continuous Delivery with Jenkins
	The Build Stage
	The Analyse Stage
	Deploy Stage

	3.4.4 Nexus Pro Repository Manager
	3.4.5 SonarQube

	3.5 Tooling
	3.5.1 Eclipse
	Eclipse Plug-ins
	Eclipse Fragments
	Eclipse Features
	Eclipse Target Platform
	Equinox P2
	Eclipse Product
	Eclipse PDE

	3.5.2 GitHub
	Git Workflow
	Issue Management

	3.5.3 Maven
	Plug-in Building
	Maven Integration for Eclipse
	Maven Project Structure

	4 Requirements
	4.1 Customer
	4.2 Infrastructure
	4.2.1 Co-Evolution Project Nature (#2, #3, #4)
	4.2.2 Custom Perspective (#5)
	4.2.3 Product (#300)
	4.2.4 Co-Evolution Controller (#15)

	4.3 Models
	4.3.1 Model Definitions (#20, #21, #22, #23, #24, #25, #82)
	4.3.2 Model Validation (#81)
	4.3.3 Export Reliability Models (#4)

	4.4 Analysis
	4.4.1 Reliability Verification (#17, #159)
	4.4.2 Performance Analysis (#18, #77)
	4.4.3 Safety Analysis (#19)

	4.5 Editors
	4.5.1 Textual Editor (#8)
	4.5.2 Graphical Editor (#9, #10, #38, #183, #184, #185, #186, #187)
	4.5.3 Side-by-Side Editing (#10)

	4.6 Evolution
	4.6.1 Difference between Models (#16, #128)

	4.7 Co-Evolution
	4.7.1 Unidirectional (#132, #237)
	4.7.2 Bidirectional (#13, #131)
	4.7.3 Integrating Existing Rules (#130)
	4.7.4 Inconsistency Detection (#14)

	4.8 Maintenance Preparations
	4.8.1 Architecture Design (#1)

	5 Foundations and Technologies
	5.1 Eclipse-Plugins
	5.1.1 Eclipse Modeling Framework
	Ecore Meta Models
	OCL Validation
	Java Code Generation

	5.1.2 Xtext
	5.1.3 Sirius and GMF
	5.1.4 Henshin
	Transformation Language
	Problems with Henshin 1.0

	5.1.5 SiDiff
	5.1.6 SiLift

	5.2 Model Analyzer
	5.2.1 PRISM
	5.2.2 xFTA
	5.2.3 LQN Solver

	5.3 Logback and SLF4J

	6 Models
	6.1 Software Architecture Models
	6.1.1 Component Diagram
	Main Elements

	6.1.2 State Charts
	Main Elements

	6.1.3 Sequence Diagram
	Main Elements
	Restrictions in CoWolf

	6.2 Quality of Service Models
	6.2.1 Discrete Time Markov Chain (DTMC)
	6.2.2 Continuous Time Markov Chain (CTMC)
	6.2.3 Layered Queuing Network (LQN)
	Elements

	6.2.4 Fault Tree
	6.2.5 Elements of a Fault Tree

	7 Transformations
	7.1 State Chart to DTMC and Vice Versa
	7.2 CTMC to DTMC and Vice Versa
	7.3 Fault Tree to CTMC
	7.3.1 Or Gate and And Gate Pattern
	7.3.2 Priority And Gate Pattern

	7.4 Component Diagram to Fault Tree
	7.4.1 Implementation
	7.4.2 Transformation Patterns
	New Component Instances
	New Connection between Components
	New Connection between Components II

	7.4.3 Connecting the Hazard to the Remaining Fault Tree

	7.5 Sequence Diagram to LQN
	7.5.1 Initial Preparation of the LQN Model
	7.5.2 Sequence Diagram: Lifelines
	7.5.3 Sequence Diagram: Synchronous Messages
	7.5.4 Sequence Diagram: Asynchronous Messages

	8 Architecture
	8.1 Concept and Overview
	8.2 Models
	8.2.1 Abstraction Layer
	CommonBase
	ModelManager
	ModelRegistry

	8.2.2 Architectural Models
	8.2.3 Quality of Service Models

	8.3 Evolution
	8.4 Co-Evolution
	8.4.1 Abstraction Layer
	AbstractTransformationManager

	8.4.2 Implementation of a Co-Evolution

	8.5 Graphical Interface
	8.5.1 Tree View
	8.5.2 Sirius
	The .odesign File

	9 Implementation
	9.1 Models
	9.1.1 Textual Editor
	9.1.2 Graphical Editor
	Graphical Mapping
	Model Editing
	Specialities for Sequence Diagrams
	Specialities for lqns
	Problems

	9.2 Version Management
	9.2.1 Model and Association Management
	9.2.2 Model Version Management

	9.3 Analysis
	9.3.1 Analysis of a dtmc Model
	9.3.2 Analysis of a ctmc Model
	9.3.3 Analysis of an lqn Model
	Solver Parameters
	Results

	9.3.4 Analysis of a Fault Tree Model
	Probabilistic Calculations

	9.4 Evolution
	9.4.1 EvolutionManager
	9.4.2 TechnicalDifferenceBuilder
	9.4.3 SiLift-RuleBaseProject
	9.4.4 Problems
	9.4.5 SiLift Rulebase Maven Plugin

	9.5 Co-Evolution Framework
	9.5.1 Resources
	9.5.2 Transformation Graph
	9.5.3 Traces
	9.5.4 Rule Mapping
	9.5.5 Execution of Henshin-Rules

	9.6 Integration Testing

	10 Acceptance Criteria
	10.1 Format
	10.1.1 The Gherkin Description Language
	Introduction
	Formulation and Syntax

	10.2 Basic Actions
	10.3 Model Editor
	10.3.1 TreeView Editor
	10.3.2 Graphical Editor
	10.3.3 (Co-) Evolution
	10.3.4 Analyze

	10.4 Test-Case Description and Execution
	T001 Co-Evolution Test
	T002 Project Test
	T003 Faulttree Analyze Test
	T004 Editor Test
	T005 DTMC Analyze Test
	Test Matrix

	11 Evaluation
	11.1 Goals
	11.2 Design
	11.3 Threats to Validity
	11.4 Results
	11.4.1 Results for Goal 1
	11.4.2 Results for Goal 2

	11.5 Conclusion
	11.5.1 Conclusion for Goal 1
	11.5.2 Conclusion for Goal 2

	12 Developer Guide
	12.1 Develop a New Model
	12.1.1 Create Projects
	12.1.2 Create Ecore Model
	12.1.3 Create Genmodel and Generate Editor
	Properties of the Meta Model in the Genmodel
	Properties of the Genmodel

	12.1.4 Change the Wizard
	12.1.5 Implement AbstractModelManager
	Create the Extension Point

	12.1.6 Add a Graphical Editor

	12.2 Develop a New Evolution
	12.3 Develop a new Co-Evolution
	12.3.1 Transformation Framework
	Preconditions and Conventions

	12.3.2 Defining Transformation Rules
	Traces
	Provided Graph for a Transformation
	Method 1: Mapping
	Method 2: Working on SiLift Differences
	Defining a Custom Method

	13 Use of Co Wolf
	13.1 Installation
	13.1.1 CoWolf Product
	13.1.2 Install from the Update Site
	13.1.3 Compiling CoWolf from Source
	Fundamental Build Tools
	Import the Server Certificate
	Compile with Maven Standalone
	Compile within the Eclipse IDE
	Setting up the Logging Dependencies

	13.2 Create New Models
	13.2.1 What to do when...

	13.3 Export Models
	13.4 Working with Versions
	13.5 Evolution of a Model
	13.6 Co-Evolve a Model
	13.7 Analyze a Model
	LQN
	Fault Tree
	DTMC
	CTMC

	14 Future Work
	14.1 Development
	14.1.1 Static Analysis on Rules for Automatic Prioritization
	14.1.2 Iterative Sample-based Rule Generation

	14.2 Functionality
	14.2.1 Multiple Analysis Methods
	14.2.2 Multiple Transformation Providers
	14.2.3 Synchronization between two Model Instances
	14.2.4 Automatic Co-Evolution and Synchronization
	14.2.5 Work with Delta Sets
	14.2.6 Headless Operation
	14.2.7 Merged Model Editor
	14.2.8 Model Annotation Infrastructure

	15 Conclusion
	Bibliography
	Glossary
	Acronyms

