CoWolf - A Generic Framework for Multi-View
Co-Evolution and Evaluation of Models
- Tool Paper

Sinem Getir!, Lars Grunske!,
Christian Karl Bernasko?, Verena Kéfer?, Tim Sanwald?

'Reliable Software Systems, University of Stuttgart, Germany
{sinem.getir, lars.grunske}@informatik.uni-stuttgart.de
2University of Stuttgart, Germany
{st106732, swt74174, swt80243}@stud.uni-stuttgart.de

Abstract. Agile and iterative development with changing requirements
lead to continuously changing models. In particular, the researchers are
faced with the problem of consistently co-evolving different views of
a model-based system. Whenever one model undergoes changes, corre-
sponding models should co-evolve with respect to this change. On the
other hand, domain engineers are faced with the huge challenge to find
proper co-evolution rules which can be finally used to assist develop-
ers in the co-evolution process. In this paper, we introduce the CoWolf
framework that enables co-evolution actions between related models and
provides a tooling environment. Furthermore, we demonstrate the results
of a case study on the developed tool.

Keywords: Model evolution, multi-view modeling, model co-evolution,
model synchronization, model differencing, quality of service models

1 Introduction

Models are a great aid to reduce the complexity of a software system so that
analysis tools and humans can conceive it. Commonly, great parts of the program
code are generated from domain specific models and analysis on performance,
reliability and safety are completely done on separate models. Consequently, it is
desirable to split the information into different models that are all specialized for
a specific task allowing a well-founded theory on analysis methods and a rich tool
infrastructure. This leads to the problem of co-evolving these different models,
to keep them consistent when one of the models evolves over time. A solution to
these problems is seen in incremental model transformation and synchronization,
a process that identifies changes done to a source model and which translates
only these changes to the target models.

The CoWolf tool presented in this paper delivers a framework for model
development, transformation and analysis, implementing the idea of incremental
model transformation. In CoWolf incremental transformation isolates changes

2 Sinem Getir et al.

that were done to a model to selectively propagate only these changes to the
other models. In detail the contribution of the CoWolf tool comprises mainly
two aspects:

— The co-evolution of an associated model on the basis of evolutions.
As described, models may have to be updated if other models changed. Often,
those updates can be described canonically. CoWolf features the definition
of rules that define the relation between model types. Using these rules,
co-evolutions can be done (semi)-automatically for all associated models.

— Deliver utilities for model development and analysis. For consistent
development of the models, CoWolf provides a common environment with
graphical and textual editors. Furthermore, it implements interfaces to ex-
ternal tools to analyse models.

2 CoWolf Framework

CoWolf is an extensible framework for model evolution and co-evolution man-
agement and it has mainly two goals. First goal is conducting the co-evolution
process when one of the corresponding models undergoes changes. We denote
these corresponding models as couples. Currently CoWolf supports seven differ-
ent models: state charts, component diagrams and sequence diagrams as architec-
tural models; and discrete time markov chains (DTMC), continuous time markov
chains (CTMC), fault trees, layered queuing networks (LQN) as QoS models.
We use Henshin graph transformations [1] to accomplish the co-evolution pro-
cess. Implemented transformations and their directions between couples from
architectural and QoS models are presented in Figure 1 (e.g. DTMC-CTMC
or CTMC-fault tree are denoted as couples). As we observe, while there ex-
ist bidirectional transformations between state charts and DTMCs, there exist
unidirectional transformations from component diagram to fault trees.

Second goal is delivering utilities for the model driven development and direct
support for model analysis. During the continuous development of the models,
CoWolf provides a common and user friendly environment with textual (Eclipse
Xtext) and graphical editors (Eclipse Sirius) for different model types. Further-
more, it establishes interfaces to external tools to analyse models. In Figure 1,
we display the integrated model solvers to the corresponding QoS models. The
tooling environment is enriched with the textual editors to represent the verifica-
tion properties. Following that the developer can send the model to the analyser
with one button.

CoWolf is an Eclipse plug-in and designed to be highly extensible for new
models. We demonstrate the architecture of the tool and used technologies in
Figure 2. In the following, we expand on the working principle of the CoWolf
framework and illustrate with the Stop Watch example.

2.1 Co-evolution with CoWolf

In the following, we explain the transformation and model difference process in
the background of CoWolf, and demonstrate the evolution of example afterwards.

CoWolf-A Generic Model Co-Evolution Framework 3

Architecture Models Quality of Service Models Model Solvers

> PRISM

—_
Seguence LQN . LONS
Diagram Performance

——> Incremental rules ====2 Call to external tool

DTMC
Reliability

State Charts

———p———

CTMC
Perf. & Reliability

Fault Trees
Safety

Component
Diagram

Fig. 1. Couples, transformations and model solvers supported by CoWolf

3 .-
: o {0 EQ sitift i xe
H Graphical Editors = mguates
& ®emf Lans % C edlpse e
=8| 8|=|58|&8 58 8 = g
glld)z|8 5| |8 g3 : 3 2 ¢l & :
2 gel 2]yl e £3 £ 2 S EIE|l = S .
2l dz|g d]¢< RE|E & “ SR g g8
- — — IS
Statechart| DTMC e
atechar £
Statechart DTMC State Chart <> DTMC Model .
[Architecture Model] || [Quality of Service Model]
Model Evolution Transformation ul

Core

!‘ CoWolf

A Co-Evolution Tool

Fig. 2. CoWolf architecture

Transformation process After identifying coupled models, we described Hen-
shin rules between the couples and the rules for the single models. While the
Henshin rules can be both manually created and auto-generated in the SiLift [6]
environment for a single model, the co-evolution rules should be created only
manually since it requires mapping between the coupled model elements. Ev-
ery co-evolution transformation is performed from a source model to a target
model, which exposits the co-evolution direction. Defining the co-evolution trans-
formations between the related models is not an easy task and requires domain
knowledge. On the other hand, the effort describing the transformations differ
from couple to couple. For example, transforming a state chart to a DTMC can
be performed with one to one (assuming that we omit composite states) map-

4 Sinem Getir et al.

ping considering the structure of the models. As another example, transforming
CTMC and DTMC requires the normalization of the parameters only. However,
transformations are not straight forward between fault trees and component di-
agrams [4]. As a result, CoWolf does not claim fully automatic and complete
transformations, but aims the utilization of the co-evolution process with user
interaction.

When the user wants to apply the co-evolution between couples, the changes
between the current version and the last version are calculated for the source
model. If it is the first co-evolution between the models, the differences between
an empty model and the current model are calculated. We use SiLift [6] for the
model difference calculation. After the calculation, we perform the corresponding
changes to the target model to accomplish the co-evolution. Note that there has
to be a full set of rules for every possible change (predefined) in the source model
to do a co-evolution. SiLift produces the difference output in the representation of
Henshin rules, which makes the co-evolution process applicable in our framework.
After the changes were detected, the rules can be applied and the target model
can be co-evolved. There is a high amount of work in the background process.
We refer the interested readers to the website http://cowolf.github.io/ for
the details and the source code.

Running example We demonstrate a running example called Stop Watch in
Figure 2.1 in CoWolf’s graphical editor, which enables a drag and drop facility
from the menu. The source model is a state chart and initially has three states
with three transition. When the user wants to apply a co-evolution, it is possible
to have several target models for one source model. For instance in the menu,
the user can select DTMC, CTMC as couple models of a state chart. In Fig-
ure 3(a), assuming that the target model is selected as DTMC, we display the
DTMC model after the first co-evolution action (complete transformations are
applied). After the first co-evolution, the two models are now connected and if
a change happens in the initial model, an out-of-date-warning is shown for the
target model. At some point of time, the state chart evolves as shown in Figure
3(b). A new state Lap and its transitions are added to the watch system, and
one transition is deleted. The changes are calculated by SiLift, whose output is
also visible in CoWolf environment by the user when requested. Based on the
corresponding changes, the DTMC co-evolves with incremental transformations.
As shown in 3(b), the applied transformations generate exactly the same struc-
ture as in the state chart. On the other side, the model is incomplete because of
the parameters, therefore the user interaction is needed for valid models.

Extending CoWolf CoWolf is an extensible MDD framework for new types of
models with its flexible architecture (Figure 2). For this, the developer needs to
provide four artifacts: 1) Metamodels of the coupled models, 2) Henshin rules
for the single models to detect changes between two instances (manually created
or auto-generated in SiLift environment). 3) Henshin rules for the co-evolutions
and 4) a GUI. We refer the readers to https://github.com/CoWolf/CoWolf for
the details of the architecture.

CoWolf-A Generic Model Co-Evolution Framework 5

CoWolF perspective - platform:/resource/My%20Project/stopwatch.dtmc.aird/stopwatch.dtmc - CoWolFf

sikg & Qv v > v = P CoWolf perspective
s s
_ & stopwatch.statemachine 2 & stopwatch.dtmc 2
- : v o @ @[125% |#Palette b 8 v H v & vy o & @|125% #Palette b | o
RQaD- - oo -
Stop Watch < o
e Create ¢ & Create
State «insi:» 1.0 Run 1.0 Stop State
State ¢ Label
Machine / Transition
Composite 1.0
State Ecangcl
/ Transiti Oset Initial
ransition State
® Entry
© Exit
* Do Action

(a) The initial state chart and the co-evolved DTMC

CoWolf perspective - platform:/resource/My%20Project/stopwatch.dtmc.aird/stopwatch.dtmc - Cowolf

o @ Qv v 5 v = | P CoWolf perspective
. s
_ & stopwatch.statemachine & 4 stopwatch.dtmc 2
- u ~ B 1 & |Gpalette > |B K- & D% wo @ @[125% i Palette b | o
RQRQAD-#- Meao- -
Stop Watch & Create & Create
State “i:si:: 10 Run 02 Stop State
State # Label
Machine 08 / Transition
Composite ’ 0.65
State 0.3 & Change
- Oset Initial
/ Lap
Transition State
® Entry

@ Exit
+ Do Action

(b) The state chart and DTMC model after the second co-evolution

Fig. 3. A co-evolution from state chart to DTMC in CoWolf

2.2 Integrated Model Solvers

Besides the incremental transformation of models, CoWolf is also capable of
measuring quality aspects of models. For this, we implemented a user friendly
interface to the external solvers for the corresponding QoS model. As presented
in Figure 1, CoWolf supports the models solvers for DTMC, CTMC, LQN and
fault trees via PRISM [7], LQNSolver [2] and Xfta [9] respectively. The solvers
produce analysis results (e.g. measurement and prediction) for systems’ availabil-
ity, performance and safety attributes. With this feature of CoWolf, developers
do not have to fully understand the modelling language of the external model
solvers (e.g Prism grammar or Open-PSA script in Xfta) and can run the anal-
ysis from CoWolf directly. The developer then only needs to set the properties
and trigger the analysis button on the selected model. However, the analysis
steps differ from model to model. For example, a fault tree analysis is always
performed on the top event in the model. On the other hand, a CTMC model
requires property description in PCTL. CoWolf produces a solution for this and
enables the user to write the properties in an editor whose design was inspired
by ProProST tool [5]. Hence, our Xtext editor for the properties is capable of
generating the full PCTL.

6 Sinem Getir et al.

In the background, whenever the analysis is triggered, CoWolf transforms
the model to the language supported by the solver and runs the evaluation with
the selected tool. Afterwards CoWolf receives and parses the results from the
tools and presents them in Eclipse as an extra view. When requested, exporting
the models in the language of the external tools is also possible. As a result, this
feature enables users to benefit the full functionality of the solvers.

3 Evaluation

We evaluate the CoWolf framework on a standard automation case study called
Pick&Place Unit (PPU) [8]. The Pick&Place unit has four main components:
storage, crane, stamp and sorter, which stores, conveys, processes and sorts the
work pieces on the platform respectively. The system has 14 predefined evolution
steps and all the steps have different affects on various types of models. We per-
form co-evolution actions between state charts and corresponding discrete time
markov chains (DTMC) and compare the incremental transformations, which
are executed with co-evolution process, and complete transformations as demon-
strated in Figure 4.

In Figure 4(a) we present the comparison in terms of the execution time. In
general co-evolution actions are faster than the execution of complete transfor-
mation. However at steps such as 4,5 and 9, the co-evolution process takes much
longer than the complete transformation. The reason for this is the calculation of
the difference between the models in addition to the execution of the incremental
transformations. We observe in the evolution steps that the changes between 3-5
and 8-9 are much bigger compared to the other steps. As aforementioned, we use
an external tool (SiLift) to calculate the diffs between the models. Therefore, we
provide the second evaluation by only evaluating the number of rules executed
with incremental transformations in Figure 4(b) to support this argument. The
number of rules for incremental transformation is apparently much less than the
number of complete rule executions as expected.

executed

Executon fime n s

Number of rules

1 2 3 4 5 6 7 8 9 10 1 12
—e— Complete Transformation

siep step

(a) Execution time (b) Executed number of rules

—4— Incremental Transformation

Fig. 4. Performance comparison between incremental and complete transformations
for each step

CoWolf-A Generic Model Co-Evolution Framework 7

4 Conclusion

Domain engineers are faced with big challenges to manage co-evolution in multi-
view model based systems. In this paper, we have introduced an extensible frame-
work for co-evolution and model analysis to assist the developers. CoWolf is an
open source project for the community and extensible for any kind of model.
Since it is generic, plug-in based and includes SiLift, we would like to integrate a
co-evolution analysis [3] to improve the co-evolution actions between the models
as a future work.

Acknowledgments. This work is supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design For Future - Man-
aged Software Evolution. The authors would like to thank Christian Karl Bernasko,
Manuel Borja, Verena Kéfer, David Krauss, Michael Miiller, Philipp Nietham-
mer, Tim Sanwald, Jonas Scheurich, David Steinhart, Rene Trefft, Johannes Wolf
and Michael Zimmermann for their great work in the CoWolf development.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place emf model transformations. In: Intl. Conf. on Model
Driven Engineering Languages and Systems, pp. 121-135 (2010)

2. Franks, G., Maly, P., Woodside, M., Petriu, D.C., Hubbard, A.: Layered queueing
network solver and simulator user manual. Dept. of Systems and Computer Engi-
neering, Carleton University (2005)

3. Getir, S., Rindt, M., Kehrer, T.: A generic framework for analyzing model co-
evolution. In: Model Evolution, International Conference on Model Driven Engi-
neering Languages and Systems (2014)

4. Getir, S., Van Hoorn, A., Grunske, L., Tichy, M.: Co-evolution of software architec-
ture and fault tree models: An explorative case study on a pick and place factory
automation system. In: Intl. Workshop on Non-functional Properties in Modeling:
Analysis, Languages, Processes. pp. 32—40 (2013)

5. Grunske, L.: Specification patterns for probabilistic quality properties. In: Proc. of
ICSE, 2008. pp. 31-40 (2008)

6. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lifting
of model differences in the context of model versioning. In: Intl. Conf. on Automated
Software Engineering. pp. 163-172 (2011)

7. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. of International
Conference on Computer Aided Verification. LNCS, vol. 6806, pp. 585-591. Springer
(2011)

8. Legat, C., Folmer, J., Vogel-Heuser, B.: Evolution in industrial plant automation:
A case study. In: Proc. of IECON 2013. IEEE (2013)

9. Rauzy, A.: Anatomy of an efficient fault tree assessment engine. In: Virolainen, R.
(ed.) Proceedings of PSAM’11/ESREL’12 (June 2012)

8 Sinem Getir et al.
A Demonstration of CoWolf

CoWolf is an eclipse plug-in and has some pre-installation requirements such as Hen-
shin, SiLift and Sirius in Eclipse EMF environment. The following instructions will
describe how to set up a CoWolf project, create a model, co-evolve models incremen-
tally and analyse a model with an external model solver. Please visit www.youtube.
com/channel/UCCLr7fwKSqJTkeekTa3Y09Q to see the tutorial video.

A.1 How to Create a Project

To create a “CoWolf project”, we go to File=>New=-Other. In the wizard window,
we select CoWolf Project, specify a project name and complete the project creation.
To benefit from the functionality of CoWolf, maintaining the CoWolf perspective is
important, because the project in the project explorer is only visible in this perspective.

A.2 How to Create a Model

We select the predefined “models” folder from the project folder to create a model.
The context menu with a right click will be opened. Afterwards, selecting the New=-
Other sub-entry of the context menu opens the wizard window. We find the sub folder
“Models” of the CoWolf entry. Our goal in this tutorial is to create a state chart
representation of a Stop Watch shown in Figure 5. For this example, we select the
state chart model, specify a name and click finish to create the model. The project
should now contain two files, one with the extension “aird” and the other with the
extension “statechart”. The file with the extension statechart represents the model as
a tree view, while the extension “aird” is a graphical representation of the model.
Double click on the “*.aird” file opens the graphical representation that will bootstrap
the graphical view. You should now see a little triangle which indicates that this entry
has now a folder structure. We navigate to ”Representations per category” and select
the innermost file in this nested folder.

StopWatch

Stop Run

stop

Fig. 5. State chart stop watch example.

CoWolf-A Generic Model Co-Evolution Framework 9

A.3 How to Co-Evolve a Model

Our next goal is to co-evolve the state chart model with a DTMC model. After creating
the state chart model, we want to obtain a DTMC representation of Stop Watch. A
complete transformation from state chart to a DTMC will be performed, since this
is the first co-evolution step. For the first co-evolution, an empty DTMC model is
required. After the empty DTMC model was created, we select the state chart model
the sub-entry “Co-FEvolve” of the “CoWolf” entry. The project wizard will then list
the models that can be used for the co-evolution. We choose the DTMC model and
click finish to start the co-evolution process between these two models. After the co-
evolution process is completed, we need to specify model parameters such as transition
probabilities manually for the DTMC model. Otherwise, the model will not be valid
as demonstrated in Figure 6 for the generated DTMC.

& Problems & ¥ & stopwatch.dtmc &

4errors, 0 warnings, 0 others

Description

¥ @ Errors (4 items)
D The 'OutgoingDontAddUpToOne' constraint is violated on 'State Stop'
© The 'OutgoingDontAddUpToOne' constraint is violated on 'State Run'
© The 'OutgoingDontAddUpToOne' constraint is violated on 'State Reset' 0.0 0.0
@ The 'initalStateRequired’ constraint is violated on 'DTMC’

B v B v v v = ® Q150% (v | @

Reset Stop
0.0

Fig. 6. Validation result and the generated DTMC

As a second co-evolution step, we want to perform an incremental co-evolution
when the state chart model is modified e.g. by adding a state and transitions. After
saving the changes, CoWolf indicates in the problems tab of the Eclipse environment
that the DTMC model is out of date. To update it, we can perform an incremental
co-evolution step by co-evolving the state chart model again with the DTMC model.
The co-evolution process will now only add the missing changes to the DTMC model
and not perform a complete transformation of the whole state chart model. We display
the out of date warning when the state chart is modified and generated models after
the second co-evolution step in Figure 7(a) and in Figure 7(b) respectively.

A.4 Analysing a Model

In this tutorial, we use the probabilistic model checker Prism, to analyse the DTMC
model. To be able to access the Prism analyser with the CoWolf interface, we need to
specify the path where the Prism .exe file is, in the settings configuration. For this,
we go to Window=- Performance= CoWolf= Models= DTMC and specify the path
to the Prism root directory. To perform an analysis on a DTMC model, we use the
context menu and select the sub entry “Analyse” of the CoWolf entry. Then the wizard
will allow us to choose between analyse and verify. Analysis/Verification via Prism
can be performed in two ways. 1) reachability analysis that requires state selection
in the wizard. 2) reliability/performance analysis with more complex properties in
PCTL(Probabilistic Computational Tree Logic) that requires property specification

10 Sinem Getir et al.

I*. Problems &
Oerrors, 1 warning, 0 others
Description a
¥ & Warnings (1item)
& The associated source model ('stopwatch.statemachine’) was changed. It's recommended to perform a co-evolution.

(a) Out-of-date warning after the evolution step for the state chart

& *stopwatch.statemachine 52 & *stopwatch.dtmc 52

=t R 2Q200% v | mE B v B~ & M v ®m et @ @|200% |~ | @ B
StopWatch
< ini > 1.0 0.2
«init» Run Stop
—— Reset
Stop Run
stop
0.8 0.65
0.3
ntinue
Lap

(b) Coupled models after one evolution step

Fig. 7. Incremental co-evolution between a state chart and DTMC model

together with state/label selection (See Figure 9). Afterwards we can click finish to
compute the analysis on the valid models and obtain the results in a specific CoWolf
view. In this example, we compute a reachability analysis on the co-evolved DTMC
model and demonstrate the analysis result in Cowolf view in Figure 8.

PRISM Analysis

ini 1.0 0.2
;':5'3 B Stop Results for DTMC

Reachability Analysis

0.8 0.65 State Probability
0.3 State: Reset 1.0
State:Lap 0.8 CO Wolf
Lap State: Stop 1.0 A Co-Evolution Tool

State: Run 1.0

Fig. 8. DTMC analysis results in CoWolf view

CoWolf-A Generic Model Co-Evolution Framework 11

& Analyze CTMC with PRISM model checker

Analyze a ctmc model

Create properties to analyze,

Create properties

Property |Pr0babilistic Response w |
If |state:"a"
was true, |State:"n"

will be true within |between soand...

with probability | »=

Create Property

Edit properties
Properky Marne
Probabilistic Response: If State:"a" was true, State:"A" will be true between 1 and 4 with

Properky
P x=1[G{(State"s") => P == 0.4 [F[1, 4] (State:"a") 11]

® [Eirish H Cancel]

Fig. 9. PCTL property specification with CoWolf textual editor

